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Description of the synchronous machine H

The synchronous machine as an AC power generator, driven by a turbine,
converting mechanical into electrical energy. This machine is the major
electric power generating source throughout the world. When operating as
a motor, the machine converts electrical energy to mechanical energy.

Our interests refer to the applications of the synchronous machine within a
large interconnected power system, mainly considering the following
conditions:

> steady-state;

> electromechanical transients. =i
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Description of the synchronous machine n

The two principal parts or a synchronous machine are ferromagnetic
stfructures:

> The stationary part:

‘0

*

Called stator or armature

Essentially a hollow cylinder

Has longitudinal slots with coils of the armature windings.

> These windings carry the current supplied to an electrical load by a
generator (or received from an ac supply by a motor)
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» The rotating part:

% Called rotor

% Mounted on the shaft and rotates inside the hollow stator.
% The winding on the rotor is called the field winding

% The field winding is supplied with DC current.

The resultant flux across the air gap between the stator and rotor generates
voltages in the coils of the armature windings and provides the
electromagnetic torque between the stator and rotor.
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Description of the synchronous machine
The DC current is supplied to the field winding

by an exciter, which may be: nes .
generator mounted on the same shaft i S‘Wnp“-‘ =8 W
» A separate DC source connected to the /]]]/ﬂf}h‘ ) &N
field winding through brushes bearing on slip oo KIS\

rngs (asin Fig. 1).

ROTOR STATOR
. Fig. 1
Large AC generators usually have exciters Exploded view of
consisting of an AC source with solid-state a synchronous machine

rectifiers.

If the machine is a generator, the shaft is driven by a prime mover, which is
usually a steam, gas or hydraulic turbine. As we have seen before, the
electromagnetic torque developed in the generator when it delivers power
opposes the torque of the prime mover.

When the machine operates as a motor, the electromagnetic torque
developed in the machine (except for core and friction losses) is converted
to the shaft torque which drives the mechanical load.



Description of the synchronous machine

Figure 2 shows the simplified cross-
section view of a two-pole cylindrical
machine of a generator called
round-rotor machine (or nonsalient
rotor).

» The field winding (rotor), indicated

by the f-coil, gives rise 1o two poles
N and S as marked.

» The axis of the field poles is called
the direct axis or simply the d-axis

» The centerline of the interpolar

space is called the quadrature
axis or simply the g-axis.

» The positive direction along the
d-oxis leads the positive direction
along g¢-axis by 90° (as shown in
the figure).

De field ¢/
winding
on rotor

Figure 2
Elementary three-phase AC generator



Description of the synchronous machine

Stator
» The opposite sides of a coil, are in
slots @ and a’, 180° apart.

» For a three phase machine,
identical coils are in slots b and b’,
and slots ¢ and ¢”’.

» Coll sides in slots a, b, ¢ are 120°
apart.

The conductors shown in the slofs
indicate a coil of only one furn, but
such a coil may have many turns
and is usually in series with identical
coils in adjacent slots to form a
winding having ends designated a
and a’.

Dc field f
winding’
on rotor

Ro.l.or Rotor
In the actual machine the winding
has a large number of turns
distributed in slots around the
circumference of the rotor.

The strong magnetic field produce
links the stator coils to induce
voltage in the armature windings as
the shaft is turned by the prime
mover.

mmf of dc winding



Description of the synchronous machine

Figure 3 shows a salient-pole
machine which has four poles (i.e., 2

pole pairs).
The different numbers of poles, with

respect to Figure 2, has the following
consequences:

» The opposite sides of an armature
coil are 90° apart. So, there are
two coils for each phase.

» Coll sides a, b, and ¢ of adjacent
coils are 60° apart.

» The two coils of each phase may
be connected in series or in
parallel.

g-axis
dc field
~winding coils

Figure 3
Cross section of an elementary stator and
salient-pole rotor

Although not shown in Fig. 2, salient-pole machines usually have damper
windings, which consist of short-circuited copper bars through the pole.
The purpose of the damper winding is to reduce the mechanical
oscillations of the rotor about synchronous speed. This aspect will be

discussed later.



Description of the synchronous machine n

Obs #1: the windings of the polyphase synchronous machine constitute a
group of inductively coupled electric circuits, some of which rotate relative
to others so that mutual inductances are variable.

Hp#1: Only linear magnetic circuits are considered. Therefore, the saturation
of magnetic parts is neglected.

Obs#2: Hp#1 allows us to refer separately to the flux and flux linkages
produced by a magnetomotive force (mmf). Pay attention that in any
electric machine there exists only the net physical flux due to the resultant
mmf of all the magnetizing sources (i.e., the rotor and the stator one).



Description of the synchronous machine n

In the two-pole machine one cycle of voltage is generated for each
revolution of the two-pole rotor while in the four-pole machine two cycles
are generated in each coil per revolution, as shown if Figure 4.

® @

wt wt

6=14 . )
Figure 4.1 Two-pole generator Figure 4.2 Four-pole generator
(1) Winding beginning (1) Winding beginning

(2) Winding end (2) Winding end

(3) Voltage (3) Voltage

(4) A cycle of the voltage (4) A cycle of the voltage

(6) A rotation of the shaft =1 cycle (5) A rotation of the shaft = 2 cycles
(7) Coil (7) Coil

(8) Coil connection



Description of the synchronous machine m

> In the two-pole machine one cycle of voltage is generated for each
revolution of the two-pole rotor.

> In the four-pole machine two cycles are generated in each coil per
revolution.

Since the number of cycles per revolution equals the number of pairs of

poles, the frequency of the generated voltage is

PN N _ P
f=5505=P=3/m (1.1)
Where:
f = electrical frequency in Hz
P = number of poles ( p = number of pairs of poles )

N = rotor speed in rom
fm = N/60 = mechanical frequency in revolution per seconds (Hz)

Eq.(1.1) tells us that there is a strict equality constraint between the
mechanical frequency (i.e. rotation speed) of the machine and its electrical
frequency. A two-pole, 50 Hz machine operates at 3000 rom, whereas a

four-pole machine operates at 1500 rom.
Usually, fossil-fired steam turbo-generators are two-pole machines, whereas

hydro-generating units are slower machines with many pole pairs.



Description of the synchronous machine m

Since one cycle of voltage (360° of the voltage wave) is generated every
time a pair of poles passes a coil, we must distinguish between electrical
degrees used to express voltage and current and mechanical degrees
used to express the position of the rotor.

@ @

wt

5 Figure 4

> In a two-pole machine electrical and mechanical degrees are equal.
> In a four-pole machine, therefore, two cycles, or 720° electrical degrees,
are produced per revolution of 360° mechanical degrees.

In any machine the number of electrical degrees or radians equals P/2 = p
times the number of mechanical degrees or radians, as can be seen from
Eqg. (1.1) by multiplying both sides by 2.

All angular measurements are going to be expressed in electrical degrees

and the direct axis always leads the quadrature axis by 90 electrical
degrees in the counter-clockwise direction of rotation
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Three-phase generation
Armature winding

>

A\

Coils a, b, ¢ represent the three
armature windings on the stator of
the round-rotor machine

Concentrated coil f represents the
distributed field winding on the rotor

The three stationary armature coils
are identical in every respect and
each has one of its two terminals
connected to a common point ‘O’.

The axis of coil a is chosen at 6; = 0°

Counter-clock wise around the air
gap the axes of the b-coil is chosen
at 8, = 120°
Counter-clock wise around the air
gap the axes of the ¢-coil is chosen
at 8, = 240°

iy Quadrature axis

Figure 5

Idealized three-phase generator
showing identical armature coils a, b
and ¢ and field coil f. Direct axis leads
quadrature axis by 90° in the
anticlockwise direction of rotation.



Three-phase generation
Hypothesis:

1.

Lar = My cosOy

Coils a, b, ¢ have self-inductance
L, respectively equal to the seli-
inductances Lgg, Lpp, L., ©Of the
distributed armature windings
which the coils represent so that:

Ly =Lgg = Lpp = L.

The mutual inductances L, L,
and L,. between each adjacent
pair of concentrated coils are
negative constants denoted by
— Mq:

—Mg = Lgp = Lpe = L¢g

iy Quadrature axis

Figure 5

The field coil has a constant self-inductance Lgs

Currents iy, iy, i, are a balanced three-phase set of currents: i, +i, +i. =0

. The mutual inductance between the field coil f and each of the stator coils

varies with the rotor position §; as a cosinusoidal function with maximum

value Mg so that:

Ly = Mg cos(6,—120°) Le.s = My cos(64—240°)



Three-phase generation n

Flux linkages with each of the coils a, b, ¢ and f are due to its own current
and the currents in the three other coils.
Flux-linkage equations are therefore written for all four coils as follows:

Aa = Laalq + Laply + Lgclc + Logis
Armature: Ap = Lpgiq + Lppip + Lycic + Lyfif (2.1)
Ae = Legla + Leplp + Lecle + Ly

Taking intfo consideration the previous hypothesis, the flux linkage equations
(2.1),(2.2) can be transformed in such a way:

Armature:
Ag = Lggiq + Laplp + Lgcic + Lafif = Lgi, — M.(ip, +i,.) + Lafif
Ab == Lbaia + Lbbib + LbCiC + Lbflf = LSib - Ms(ia + lc) + Lbflf (23)

Ae = Legiq + Lepiy + Legic + Leopiy = Lgie — My(iq + ip) + Lesis



Three-phase generation
Armature winding

Remember that, if we consideri,, i, i, as a balanced three-phase set of

currents, we have:
ig +i,+i.=0
lq = —(p + i)
ip = —(ig + i)
ic = —(ig +ip)

By infroducing these last equations into EQ. (2.3) we obtain:

/1(1 - (LS + Ms)ia + Laflf

Ab - (LS + Ms)ib + Lbflf

/16 == (LS + Ms)ic + chlf
STEADY STATE HYPOTESYS:

> The current if is DC with a constant value I

(2.4)

> The field rotates at constant angular velocity w so that for the two-pole

machine
dbq _
dt
Where 6,, can be arbitrarily chosen at t = 0.

Ond Qd = wt + HdO



Three-phase generation m

Armature winding

Eqs. (2.4), by knowing that:

Los = My cosb, Ly = Mg cos(6,—120°) Le.s = My cos(64—240°)
and considering steady state condition become:
Ag = (Ls + My)i, + Mglecos(wt + 040)
Ab = (LS + Ms)ib + Mf[fCOS((Ut + QdO - 1200) (25)
Ac = (Ls + Mg)i. + Melccos(wt + 840 — 240°)

The first of these equations shows that 4, has a-ais
TWO ﬂUX-'IﬂkOge ComponenTs: Direct axis ed/"? i Quadrature axis

» One due to the field current If

» One due to the armature current i,
(which is flowing out of the machine stator
to generate power towards the externadl
load)

The same can be applied for the other two _
ohases. Figure 5



Three-phase generation n

Armature winding

If coil @ has resistance R, then the voltage drop v, across the coil from
terminal a to terminal 0 in Fig. 5 is given by:
dg

. . di
Vg = —Rla — ? = —Rla — (Ls + Ms)ﬁ

The negative signs apply because the machine is being treated as a
generator. The last term of EqQ. (2.6) represents an internal electromotive
force (emf), which we now call e, /. This emf can be written as:

e, = V2|E;|sin(wt + O40) (2.7)

a)MfIf
V2

where: |E;| =

The action of the field current causes e, to appear across the terminals of
the a-phase when i, is zero, and so it is called by various names such as:

* No-load voltage

% Open-circuit voltage

% Synchronous internal voltage
% Generated emf of phase a



Three-phase generation m

Armature winding

In Egs.(2.6) and (2.7) the angle 6,, indicates the position of the field winding
(and the d-axis) relative to the a-phase att = 0. Hence, § = 0,7 — 90°
indicates the position of the ¢-axis, which is 20° behind the d-axis in Fig. 5.

For later convenience we now set 8,4, = 6§ + 90° and then we have:

0 = wt+ 049 = wt + 6 +90° (2.8)
where 6,4, w and § have consistent units of angular measurement.

Substituting from Eqg. (2.8) into EQ. (2.7) and noting that sin(a + 90°) = cos a
we obtain for the open-circuit voltage of phase a:

e, = V2|E;|cos(wt + &) (2.9)

The terminal voltage v, of Eq. (2.6) is then given by:

(2.10)

This equation corresponds to the a-phase circuit of Fig. 6 in which the no-
load voltage e, is the source and the external load is balanced across all
three phases.



Three-phase generation m

Armature winding

It is possible to apply the same for the no-load voltages e, and e.r which
lag e, by 120° and 240°, respectively.

Hence, e, e, and e constitute a balanced three-phase set of emfs which
give rise to balanced three-phase line currents, say:

i, =V2|I,| cos(wt + 8 —8,)
i, =V2|I,| cos(wt + 6 — 6, — 120°) (2.11)

i. =2|I,| cos(wt + 85 — 6, — 240°)
Where:

> |1,] is the rms value — .0

> 0, is the phase angle of the current
i, with respectto e, .

Figure 6

Armature equivalent circuit of the 1,
idealized three-phase generator
showing balanced no-load voltages
e, €y, €. N the steady state




Three-phase generation m
Field winding

As previously done with the armature coill, the target is to find expressions for
flux linkage and current related to the field winding. To do that, it is possible
fo start by substituting the definition of L,¢, Lys, L

Los = My cosb, Ly = Mg cos(6,—120°) Le.s = My cos(64—240°)

info EQ. (2.2), which states that A = Lyrig + Lygip + Legpic + Legip, tO yield:

This expression for the flux will be
simplified in the following slides. Direct s T Quadisure as

Figure 7 Armature equivalent
. windin 1ating with rolc
Representing the armature of the e /
synchronous machine by a direct-axis

winding of mutual inductance ./3/2M;
with the field winding. Both windings
rotate together in synchronism. bais c-axis




Three-phase generation m
Field winding

Knowing that: 8; = wt + § + 90°, the first term within the brackets Eq. of (2.12)
can be written as:

i,cos0; =2|I,| cos(wt+8—0,)cos(wt + & + 90°) (2.13)
Considering that: 2 cosa cos f = cos(a — ) + cos(a + B)
i,cosf, = %{— sin 8, — sin[2(wt + &) — 6,] }
i, cos(8 — 120°) = %{— sin 8, — sin[2(wt + 8) — 6, — 120°] } (2.14)
i. cos(6; — 240°) = ”—\/‘%l{— sin 8, — sin[2(wt + §) — 6, — 240°] }
The terms involving 2wt Iin Egs. (2.14) are balanced second harmonic

sinusoidal quantities which sum to zero at each point in time. Hence, adding
the bracketed terms of EQ. (2.14) together, we obtain:

3|1al

[i, cos By + i, cos(6; — 120°) + i, cos(6; — 240°)] = — N

sin 8, (2.15)



Three-phase generation m
Field winding

If we substitute Eq. (2.15) info EQ.(2.12) for the flux linkages A, we obtain:

(2.16)
where the DC current i, is defined as:
ig = —V3|I,|sinb, (2.170q)
or else:
ig =+/2/3 i cos0; + iy cos(0; —120°) + iy, cos(6; — 240°)] (2.17b)

In general, the field winding with resistance Ry and enfering current i has
ferminal voltage v, given by:

. di

Because A; is not varying with fime in the steady state, the field voltage
becomes v = Rrl; and iy = Iy can be supplied by a DC source.



T.hree.—p.hase generation
Fleld winding

We now recall the obtained equation (2.16) for the flux linkages A:

Observations:

a-axis

> The flux linkages with the field .

Direct axis 0,

winding due to the combination of S /
iq. ip and i, do not vary with time. A

Quadrature axis
7
Ve

> We can regard those flux linkages ... cootaen &) \/
as coming from the steady DC vining roiating wih r0lof )%, \
currer.lt iq In G fICi‘IfIOUS. DC circuit V / DY s winsing rovming it ot
coincident with the d-axis

Mutual |nductance

> The fictitious DC circuit is stationary ,
with respect to the field circuit. T T

b-axis c-axis

» The two circuits rotate together in
synchronism end have a mutual

inductance /3/2 M;.

Figure 7



Three-phase generation m

Summary

Hypothesis:
Balanced three-phase system + Steady state

Armature:

= (Ls + My)iy + Mglzcos(wt + 84)
/1b = (LS + Ms)ib + Mflfcos(a)t + 9d0 - 1200) (25)
Ac = (Ls + Mg)ic + Mglscos(wt + 049 — 240°)

i, Quadrature axis

Vg = —Riq — (Ls + Ms) dl“ e, (2.10)

e, = V2|E;|sin(wt + 9d0) (2.7)
wWMgl ¢
V2
=/2|I,| cos(wt + 5 — 6,)
i, = V2|I,| cos(wt + 6 — 6, — 120°) (2.11)
= +/2|I,| cos(wt + & — 6, — 240°)

Field:

where |E;| =

/1f = LffIf - 3M\/—|Ia| sin Ha = Lff]f + / 3/2 Mfid (2] 6)

ﬂf

lg = —\/§|Ialsin9d (2]7)
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Synchronous reactance and equivalent circuits

The coupled-circuit model in Fig. 6 represents the idealized Y-connected
round-rotor synchronous machine.

If the machine is rotating at synchronous speed w and that the field current
I; is steady DC, the balanced three-phase circuit of Fig. 5 gives the steady-

state operation of the machine.
The no-load voltages are the emfs e, e, and e_.

6,=0 i

Direct axis

Rotation

Figure 5 Figure 6



Synchronous reactance and equivalent circuits

The per-phase equivalent circuit with steady-state sinusoidal currents and
voltages is shown in Fig. 8(a). Now if we recall Eq. (2.11):

i, = V2|l cos(wt + 8 —8,) (2.11)

we can note that the phase angle of the current i, in Eq. (2.11) is chosen
with respect to the no-load voltage e,, of the a-phase.

In practice, e, cannot be measured
under load, and so it is preferable to
choose the terminal voltage v, as
reference and to measure the phase

angle of the current i, with respect to
v,. Therefore, we define:

v, = V2|V, | cos wt (3.1)
e = V2|E| cos(wt + &) (3.2)
i, =V2|I,| cos(wt — 6) (3.3)

Where 6 = 6, — 6 is now the the angle
of lag of i, with respect to v,.

I, = \/§|1alcos(wt - 0)

——

+

R L.+ M,

e = »/5?|E‘-|COS(M +8) = 21V, |cos wt

Figure 8 (Q):
Equivalent circuit for reference
phase a of the synchronous
machine showing voltages
and currents as cosinusoidal
quantities.



Synchronous reactance and equivalent circuits

The phasor equivalents of Egs. (3.1), — Lo =111/~ 8

(3.2) and (3.3), are: ms) [

Va = |Va| 20° (34) S Iﬁ
= E‘- = |E,| & a = Ve
o = || 26° 3.5 A\ JETEA
o = ol 2(-6)° (3.6) -
_ B O Figure 8 (b):

> When ’r.he Currgnf I Iec:ds. Vo the Equivalent circuit for reference
angle 6 is numerically negative ohase a of the synchronous

> Whenl, lagsV,, the angle 6 is  machine showing voltages
numerically positive and currents  as  phasor

quantities.

The phasor-voltage equation is:

— RI, — jwLJd, — joMI,  (3.7)

Generated Due to armature Due to armature Due to armature
at no load resistance self-reactance mutual-reactance

Since symmetrical conditions apply, phasor equations corresponding to EQ.
(3.7) can be written for b-phase and c-phase as well with lags of —120° and

240°.



Synchronous reactance and equivalent circuits

— RI, — joLJd, — joM, (3.7)

Generated Due to armature Due to armature Due to armature
at no load resistance self-reactance mutual-reactance

The combined quantity w(L; + M) of EqQ. (3.7) has the dimensions of
reactance and is customarily called the synchronous reactance X, of the
machine. The synchronous impedance Z,; of the machine is defined by

Zg=R+jX;=R+jo(Ls+ M,) (3.8)

and Eqg. (3.7) then can be written in the more compact form

Va == Ei - I_aZ_d = Ei - IaR _anXd (39)

The equivalent circuit for the synchronous motor is identical to that of the
generator, except that the direction of I, is reversed, as shown in Fig. 9(b),
which has the equation:

V,=E +1,Z; =E; +I,R+jl, X, (3.10)



Synchronous reactance and equivalent circuits

Phasor diagrams for the previous equations are shown in Fig. 9. For the
generator note that E; always leads 17, and for the motor E; always lags V.

Generator

Figure 9(a)

Equivalent circuits for a synchronous
generator and phasor diagrams of an

over-excited genero’ror
lagging current I,

delivering

Motor

Figure 2(b)
Equivalent circuits for a synchronous
motor and phasor diagrams of an
under-excited motor drawing lagging
current I,



Synchronous reactance and equivalent circuits

Except for the case of an isolated
generator supplying its own load,
most synchronous machines are
connected to large interconnected
power systems.

In this case the terminal voltage V,,
(soon to be called V, for emphasis)
is not altered by machine loading.

The point of connection is therefore
called an infinite bus, which means
that its voltage remains constant
and no frequency change occurs
regardless of changes made in
operating the synchronous ma-
chine.

Generator

Figure 9(q)



Outline

Real and reactive power control




Real and reactive power control

When the synchronous machine is connected to an infinite bus, its speed
and terminal voltage are fixed and unalterable.

Two conftrollable variables, however, are:
> The field current
» The mechanical torque on the shaft.

The variation of the field current I referred to as excitation system control,
is applied to either a generator or a motor to supply or absorb a variable
amount of reactive power.

Because the synchronous machine runs at constant speed, the only means
of varying the real power is through control of the torque imposed on the
shaft by either the prime mover in the case of a generator or the
mechanical load in the case of a motor.

Important: it is not possible to change the active power of a machine by
changing the excitation current.



Real and reactive power control

It is convenient to neglect resistance as
we consider reactive power conftrol of
the round-rotor generator. Assume that
the generator is delivering power so
that a certain angle 4§ exists between
the terminal voltage V, and the
generated voltage E; of the machine.

The complex power delivered to the
system by the generator is given in per
unit by:
S=P+jQ=V, I
= |V,||I,]|(cos @ + j sin B) (4.1)

Equating real and imaginary quantities
in this equation, we obtain:

= |V,||1,] cos @ (4.2)
V||| sin 6 (4.3)

Generator

Constant power
locus of E;

]
|
I
I
locus of[,, |

11X, cos 6

(a)

—_—— e —

1| Xy sin 0

Remember that
(see slide 21)

(b)

Figure 10

Phasor diagrams showing:

(a) Over-excited generator delivering
reactive power to the system;

(b) Under-excited generator receiving
reactive power from the system.
The power delivered is the same in both

cases (because I, cos 6 is the same).



Real and reactive power control

Reactive power

Observations:

> Q is positive for lagging power factors since the angle 6 is numerically
positive.

» To maintain a certain power delivery P from the generator to the
constant voltage system, |I,| cos 8 must remain constant.

> As we vary the DC field current Ir under these conditions, the generated
voltage E;, varies proportionally but always so as to keep |I,| cos 6
constant

Different excitation conditions:

< Normal excitation is defined as the condition when |E;| cos § = |V;]
% Over-excited when |E;| cos§ > |V,]
< Under-excited when |E;| cos § < |V;].

» For the condition of over-excited generator, this supplies reactive power
Q to the system. Thus, from the system viewpoint the machine is acting
like a capacitor.

» An under-excited generator supplying the same amount of real power
and a leading current to the system draws reactive power from the
system and in this respect acts like an inductor.



Real and reactive power control

Reactive power

Figure 11 shows overexcited and under-
excited synchronous motors drawing the
same real power at the same terminal
voltage.

> The over-excited motor draws leading
current and acts like a capacitive
circuit when viewed from the network
to which it supplies reactive power.

» The under-excited motor draws lagging
current, absorbs reactive power, and is
acting like an inductive circuit when
viewed from the network.

In general:

» Over-excited generators and motors
supply reactive power to the system

> Under-excited generators and motors
absorb reactive power from the system.

J"Ia Xﬂ'

(a)

Figure 11

Phasor diagrams showing:

(a) Over-excited motor

(b) Under-exited motor

Both drawing current I, and constant
power at constant terminal voltage.



Real and reactive power control n

Active power

The real power P is controlled by opening or closing the valves through
which steam (or water) enters a furbine in order to change the torque.

The machine goes through the following steps:

1. If the power input to the generator is increased, the rotor speed will start
to increase

2. If the field current Ir and hence |E;| are held constant, the angle &
between E; and V, will increase.

3. Increasing § results in a larger |I,] cos 8, as may be seen by rotating the
phasor E; counter-clockwise in Figs. 10(a) and 10(b).

4. The generator with a larger § delivers more power to the network and
develops an higher counter-torque on the prime mover

5. The input from the prime mover is re-established at the speed
corresponding to the frequency of the infinite bus



Real and reactive power conftrol m

Active power

The dependence of P on the power angle & between E; and V, is also
shown as follows. By considering :

V. = |V ]20° and
E; = |E;|£5

where V, and E; are expressed in volts to neutral or in per unit, then:

— Ei|l28—-|V; — Ei|l2—-6—|V;
Ia — | 1|. | t| Ond I; — | ll : | t| (44)
1Xd —J]Xd

Therefore, the complex power delivered to the system at the terminals of
the generator is given by

— _ VIINE.l/ —SY—I1/.12
—JXd

[Vt||Ei|(cos 5—_1' sin 8§ )—||? (4.6)
—JXa

S =



Real and reactive power control m

The complex power delivered to the system at the terminals of the generator
is given by

_ V.|IE:|(cos & — jsind ) — |V, |?
S=P+jQ=|t” ll( ] ) |t|

—JjXa

The real and imaginary parts:

p = WllEid Gy s Q = Y (|E|cos 5 — |V,]) (4.7)
Xd Xa

These two equations (identical to those we derived for a lossless and shunt-less
transmission line) shows clearly the following:

> The dependence of P on the power angle § if |E;| and |V,| are constant.

> If P and V, are constant, § must decrease if |E;| is increased by boosting the
DC field excitation.

> With P constant, both an increase in |E;| and a decrease in § mean that Q
will increase if it is already positive, or it will decrease in magnitude and

perhaps become positive if Q is already negative before the field excitation
is boosted.



Real and reactive power control
Summary

Constant power

When the synchronous machine is . . locus of £ E,
connected to an infinite bus, its speed | ‘
and terminal voltage are fixed and
unalterable

|
|
|
|
|

1,1 X, cos 6

a
el | v, 1 | X, sin 0
[
i
|
IIG
|

(a)

Different excitation conditions:

< Normal excitation if |E;| cosé = |
% Over-excited when |E;|cosd > |

Vi
E Vi
% Under-excited when |E;| cos§ < |V;

Active and reactive power:

(b)

V| _ _
E:lcosé — |V,
- (Edcoss = 17) e 1
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The two-axis machine model




The two axis machine model m

The round-rotor theory already developed good results, but with the
hypothesis of for the steady-state.

However, for transient analysis we need to consider a two-axis model.

The two-axis model will be intfroduced by means of the equations of the
salient-pole machine:

> It these machines in which the air gap is much narrower along the direct
axis than along the quadrature axis between poles.

% As a direct consequence, during each revolution of the rotor, the
self inductances Lyg, Ly, Lo, Of the stator windings, and the mutual
inductances L, Ly, L. Qre not constant in but also vary as a
function of the rotor angular displacement 6,

» Despite this difference, the other characteristic are similar to the round
rotor machine:

% Three symmetrically distributed armature windings a, b, ¢

% Field winding fon the rotor which produces a sinusoidal flux
distribution around the air gap.

< The field winding has constant self-inductance Lgs



The two axis machine model
The flux linkages of phases a, b, and ¢ are related to the currents by the

iInductances so that:
Ag = Lggiq + Laplp + Lgcic + Lafif
Ap = Lpgig + Lppip + Locis + Lbfif
Ae = Logig + Leplp + Lol + chif

(5.1)

These equations look the same as the one obtained before (2.1) but all the
coefficient are variable, which makes them very hard to solve

Self inductances
(Ls> L, > 0)

Lgq = Lg + Ly, cos 26,
Lbb = LS + Lm CoSs Z(Hd - 2/377.')

Lee =Lsg+ Lycos2(0; —4/3m)

Self inductances

Lgq = Ls
Lpp = L
Lee = Ls

Salient-pole machine
Mutual inductances

(Mg> Ly, > 0)
Lab = Lba = _MS + Lm COoSs Z(Bd - 7'[/6)
LbC = ch = —Ms + Lm COoSs Z(Hd - 377.'/6)

Leqg =Lge = —Mg + Ly, cos2(64 — 51/6)

Round-rotor machine

Mutual inductances

= —M,
— _Ms
—M,

Lap = Lpg
Lye = Lep =
Leg =Lge =

Armature/Field

Laf = Lfa = Mf CoS 29d
Lbf = Lfb = Mf CoS Z(Qd - 2/37’[)
ch = Lfc = Mf COoSs Z(Qd - 4/377.')

Armature/Field

Laf = Lfa = Mf COS 29d
Lbf = Lfb = Mf COS Z(Hd - 2/37’[)
ch = LfC = Mf Ccos 2(961 - 4/37’[)



The two axis machine model m

» The equations of the salient-pole machine can be expressed in a simple
form by ftransforming the a, b, and ¢ variables of the stator into
corresponding sets of new variables, called the direct-axis, quadrature-
axis, and zero-sequence quantities which are distinguished by the
subscripts d, ¢ and 0: respectively.

» The idea of transforming these f
equations comes from the fact '
that almost all parameters
depend unequivocally on the
displacement angle 6. Rotation

All coils rotate together
Rp Ly

» For this reason, d and ¢ are
chosen as axes of reference oo
system which rotates integrally Figure 12

with the rotor.
Representation of the salient-pole

synchronous generator by armature-
equivalent direct-axis and quadrature-
axis coils rotating in synchronism with
the field winding on the rotor.



The two axis machine model m

The three stator currents iy, i, and i, can be transformed into three
equivalent currents, called the direct-axis current iy, the quadrature-axis
current i, and the zero-sequence current iy. The fransformation is made by

the matrix P, called Park’s transformation

cosf; cos(8; —120°) cos(8,; — 240°)
\/7 sin Hd sin(8,; — 120°) sin(6,; — 240°) (5.2)
142 1/4/2

» The P-tfransformation defines a set '
of currents, voltages, and flux "
linkages for three fictitious coils,
one of which is the stationary 0-coill.

. . All coils rotate together
> The other two coils are the d-coil Ry, Ly
and the g¢g-coil, which rotate in

synchronism with the rotor.
b-axis FIQUI’e ’2 c-axis

The d-coil and the g-coil have constant flux linkages with the field and any
other windings which may exist on the rotor.



The two axis machine model m

The currents, voltages, and flux linkages of phases a,b, and ¢ are
transformed by P to d, ¢, and 0 variables as follows:

lg lg Va Va Aa Aa
iq =P ib Vg| =P |Vp /1q =P Ab (53)
iO iC vO vC AO AC

The matrix P has the convenient property (called orthogonality) that its

inverse P~1 equals its franspose PT, which is found simply by interchanging
rows and columns in EqQ. (5.2).

This property ensures that power in the a, b, ¢ variables is not altered by P.

By applying Park’s transformation the resulting d, g, and 0 flux-linkage and
inductance equations are:

ho=Laiat (I Mgy (54 Lo=Li+Mi+3L,  (57)
g = Lyi, (5.5) Lg =Ly + Mg ==Ly, (5.8)

/10 == Loio (56) LO = LS - 2MS (59)




The two axis machine model ﬂ

How to obtain Eqgs. (5.4)-(5.9):

To tfransform a-b-c¢ stator flux linkages to d-g-0 quantities by means of matrix
P of Eq. (5.2), rearrange the flux-linkage expressions of Eq. (5.1):

Aq = Laqlq + Lapip + Locic + Losiy

Ab == Lbaia + Lbbib + LCCiC + Lbflf (5])
A¢ = Legla + Leplp + Lecle + Ly
as follows:
Ag Laa Lap Lac][la Laf
[Ab = [Lba Lyp  Lpc||ip| + |Lor|is (5.1b)
/1c Lca ch Lcc ic ch

Now substitute for the a-b-¢ flux linkages and currents from Egs. (5.3) to

obfain
A Laa Lap Lac Lq Laf
P 14| = |Lba Lob Lpc|P7'|ig|+ |Lor|is (5.10)
/10 Legq Lep Lec Lo ch




The two axis machine model E
Eq. (5.1b) can be multiplied by P as follow to obtain:

Ag Laa Lap Lac Lq Lar]
PP 1|4, :P[Lba Lpp L,,C] P~1|ig|+P|Los|i
Ao Leq Lep  Lec Lo Ly |
—Ad- Laa Lab Lac lq _Laf-
g :PlLba Lyp L,,C] P~1|ig| + P|Los|i (5.1b)
_/10_ Lca ch Lcc Lo _ch_

Now, as already explained, the inductances matrix is variable with 8, in the
following way:

Salient-pole machine
Self inductances Mutual inductances Armature/Field
(Ls> Ly > 0) (Mg> L, > 0)

Laq = Ls + Ly cos 264 Lap = Lpg = —Mg + L, cos2(64 — 1 /6)
Lyp = Ls + Ly cos 2(84 — 2/3m) Lpe = Lep = =M + Ly, cos 2(8, — 3m/6) Lyf = Ly = My cos2(84 — 2/3m)
Lec = Ls + Ly cos 2(0q — 4/3m) Leq =Lge =—Mg+ Ly, cos2(0; —51/6) Lep = Lyc = My cos2(8q — 4/3m)

Laf = Lfa = Mf COoSs 2961




The two axis machine model

The matrix form of:

Self inductances
(Lg> Ly, > 0)
Lgq = Lg + Ly, cos 26,
Lbb = LS + Lm COoS Z(Qd - 2/37'[)
Lee=Lsg+ Lycos2(6; —4/3m)

Salient-pole machine
Mutual inductances
(Ms> Ly, > 0)
Lap = Lpg = —Mg + L, cos2(64 — 1 /6)
Lpc = Lep = —Mg + Ly, cos2(64 — 3m/6)
Leq =Lge = —Mg + Ly, cos2(04 — 51/6)

Armature/Field

Laf = Lfa = Mf COS 2961
Lbf = Lfb = Mf COSs Z(Qd - 2/37’[)
ch = LfC = Mf COoSs Z(Hd - 4/37’[)

s the following:

—L,,| cos2(8,; + %) —cos 2(0, + %) cos2(8,; + g)

cos 2(04 + 5?”)

Laa Lab Lac
Ly Lpyp Lpc| = (Ls + M)
Lca ch Lcc

—cos 20,

0 0 1

cos2(0,4 + %)

cos2(0, + g)

1 1 1
1 1 1

1 0 0
0 1 0| —M,
1 1 1

cos 2(04 + 5?”)_

2
cos2(6,; + 5)_

_|_

(5.10)




The two axis machine model H

Finally by introducing Eq.(5.10) and the definition of P, PT into equation
(5.1b):

—cos 26 200, +Z 200, +Z
[Laa Loy Ly cos 26,4 cos (d+6) cos2(04 + 6)
(5.10)
Lca ch Lcc

100 11 1
Lya Lpp LbC]:(LS+MS)[O 1 0]—M5[1 1 1]Lmlcosz(9d+§) —0052(9d+£) c052(9d+§)

cos 2(04 + 5?”) cos 2(04 + g) cos 2(04 + %)

cosB; cos(B; —120°) cos(6,; — 240°) cos B, sin 6,4 1/V2
P= \/g [sin 6; sin(6; —120°) sin(8,; — 240°)] (5.2) p-1_— \/g cos(8; — 120°) sin(6, — 120°) 1/vZ| (5.2b)
172 12 1/V2 cos(8 — 240°) sin(6, — 240°) 1/v2
Aa Laa Lap Lac lq Lag
Aq| =P|Lpa Lpp Lpc|P7'|iq|+P|Lps|is (5.1b)
/10 Lea Lep L Lo ch
We obtain Eqgs. (5.4)-(5.9):
. 3 . 3
Ad = Ldld + \/;Mflf (54) Ld = LS + MS +5Lm (57)
. 3
Ay = Ly, (5.5) Lg=Ls+M;—31L, (5.8)

/10 = Loio (56) LO — LS - 2]\45 (59)



The two axis machine model H

The flux linkages of the field are still given by equation obtained for the
round-rotor machine. Ay = Leele +4/3/2 M¢ig

If we report all the flux equations:

Ag = Laiq + \EMfif (5.10)
Aq = Lyig (5.11)
Ao = Loy (5.12)
Ar = Lesly +/3/2 Myig (5.13)

Where:
> Ly is called the direct-axis inductance and defined by Eq.(5.7)
» Ly is called the quadrature-axis inductance and defined by Eq.(5.8)

> Lg is known as the zero-sequence inductance and defined by EQ.(5.9)
> L, and M, have the same meanings as before
» L, IS a positive number

We can note that they have constant inductance coefficients, and thus are
quite simple to use.



The two axis machine model

Obsi##1:
ig and i, are stafionary with respect to

the roftor.

Obs#2:

d and fcan be considered to act like
two coupled coils, stationary with
respect to each other as they rotate
sharing the mutual inductance 3/2Mg.

Obs#3:
d does not couple magnetically with ¢
which lags the d-axis in space by 90°

Obs#4:

The zero-sequence inductance Ly is
associated with a stationary fictitious
armature coil with no coupling to any
other coils. Under balanced conditions
this coil carries no current, and therefore
we omit it from further discussion.

i Quadrature axis

Quadrature axis

All coils rotate together
Ry Ly



The two axis machine model

Using the voltage polarities and current
directions of Fig.(a, b, ¢), let us write the
terminal-voltage  equations for the
armature windings of the salient-pole
machine:

Vg = —Rig — =2 (5.14)
vy = —Ri, — =2 (5.15)
v = —Ri; — =€ (5.16)

A much simpler set of equations for the
voltages vy, v,, vo sShown in Fig.(d, ¢, 0) is
found by employing the P-transformation.

Vg = —Rld —CE — (,()/1q (5] 7)
vy = —Rig — d—tq+ wlgy (5.18)
vO == _Rlo - dd_)lt() (5]9)

where w is the rotational speed db,/dt.

i Quadrature axis

Quadrature axis

All coils rotate together
Ry Ly



The two axis machine model

Equation (2.18) for the field winding
dAs

Vppr = Rfif + E

is not subject to P-transformation, and
soO arranging the d, ¢q, 0 flux-linkage and
voltage equations according to their
axes gives the following equations:

d-axis

vd=—Rid—dd—/1:i—a)lq .

. dlf

Vrrt = Relp + 50 J
q-axis

Ag= Lyig 5.21)

A .

vq: —qu - & + (U/‘{d

d, q,0

0-axis
UO = _Rlo - % (522)

Equations involving i, and A,
are not of interest under
balanced conditions



The two axis machine model

Observations:

>

>

A\

The f-coil is mutually coupled to the d-coil on
the d-axis

The fictitious g-coil is not magnetically coupled
from the other two windings since the d-axis
and the g-axis are spatially in quadrature.

There is interaction between the two axes by
means of the volfage sources —-wd, and
wl; which are rotational emfs or speed
voltages infernal to the machine due to the
rotation of the rotor.

The speed voltage in the d-axis depends on 4,
The speed voltage in the g-axis depends on 4,

No energy conversion could occur at standstill
(w=0) since the field and the other d-axis
circuit would then act like a stationary
transformer and the g¢-axis circuit like an
ordinary inductance caoil.

a,b,c -axis

Direct axis 0 i, Quadrature axis
«

All coils rotate together
Ry Ly



The two axis machine model m

To summarize, Park's fransformation replaces the physical stationary

windings of the armature by:

> A direct-axis circuit which rotates with the field circuit and is mutually
coupled toit,

> A quadrature-axis circuit which is displaced 90° from the d-axis, and thus
has no mutual inductance with the field or other d-axis circuits although
it rotates in synchronism with them, and

> A stationary stand-alone 0-coil with no coupling to any other circuit, and
thus is not shown in Fig. 13.

f AN A= = = == -
R sy R "
v O Ly Ly Uy :
- /\ —Ud
[ d-axis _;ﬁ\?+ = S -
p_— T
. I
Figure 13 AAA, -—“—f ______

. . . . +
Equivalent circuit for the salient-pole " U,
synchronous generator: Ly Y +

. . . w}Ld S __ q
(a) with terminal voltages vy and vy, gaxis = Ao T

(b) with armature shorf-circuited.
(a) (b)
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Transient and sub-transient effects



Transient and sub-transient effects n

> When a fault occurs in a power network, the current flowing is
determined by:

% The internal emfs of the machines in the network,
% The impedances of the machines in the network
% The impedances in the network between machines and fault.

The current flowing in a synchronous machine immediately after the
occurrence of a fault differs from the steady-state value of the fault current.

> This is because of the effect of the fault current in the armature on the
flux generating the voltage in the machine.

» The current changes relatively slowly from its initial value to its steady-

state value owing to the changes in reactance of the synchronous
machine.

» Our immediate interest is in the inductance effective in the armature of

the synchronous machine when a three-phase short circuit suddenly
occurs at its terminails.



Transient and sub-transient effects m

Before the fault occurs, suppose that the armature voltages are v,, v, v,
and that these give rise to the voltages vg, vy, vy (according fo Park)

> Figure 13(a) shows the voltages v, and v, at the terminals of the d-axis
and g-axis equivalent circuits. The short circuit of phases a, b, ¢ imposes
the condition:
Veo=Vp,=v,=0

» To simulate short-circuit conditions, the terminals of the d-axis and g-axis
circuits in Fig.13(a) must also be shorted , as shown in Fig. 13(b).

Ly

» the switches S should be interpreted AN )
in a symbolic sense: e Ln%
/

< when the switches are both
open, the sources —v; and —v,

are in the circuit
< when the switches are closed,

those two sources are removed (@) (5
from the circuit.




Transient and sub-transient effects m

Hypothesis:

The rotor speed w remains at its pre-fault steady-state value

Consequences:

» Eqgs. (5.20) and (5.21) are linear and therefore the principle of
superposition can be applied to the series-connected voltage sources.

If L

f AN o= N
o B AM, '
U{[ﬂ '_C) L-[[ Ld ’d ;
L 2 - Ud
[ daxis| — — S -

(a) (b)

With both switches closed in Fig. 13(b), we have the steady-state operation
of the machine

Suddenly opening the switches S adds the voltage source —v, in series with
the source v, and —v, in series with the source v, o produce the required

short circuits.



Transient and sub-transient effects m

By superposition, we can calculate the fault-induced changes of all
variables by setting the external sources v, 1, v4, v, €qual to zero and

suddenly applying the voltages —v,; and —v, fo the unexcited rotating
machine, as shown in Fig. 14.

> The internal speed voltages —wl, and wl,; are initially zero because flux
linkages with all coils are zero in Fig. 14 before applying the —v,; and —v,

sources.

t =0 | Figure 14
-y, Equivalent circuit of salient-
- pole synchronous generator
rofating at constant speed
— 3y with  field short-circuited.
¢t = Closing switches at t=20
_, Ccorresponds to sudden
‘ application of short circuit
fo machine terminals




Transient and sub-transient effects u

» The flux-linkage changes on the d-axis of the machine are governed by
Eq. (5.20), described in the previous chapfter:

5.20
vy = —Rig — 24— wi, - (520
. dlf
vff’ — Rflf + ? J
which gives:

where A denotes incremental changes and k = /3/2 .



Transient and sub-transient effects

Since the field winding is a closed physical winding, its flux linkages cannot
change instantaneously according to the principle of constant flux
linkages.

Therefore, sefting Ay = 0 in Eq. (6.2) gives Aiy = — (kMg /Lgr)Aig
and substituting for Air in the equation for A4, yields:

Aa = Ler

L, — &Mp) ]Aid (6.3)

The flux linkage per unit current In Eq. (6.3) defines the d-axis transient
inductance L;, where

, _adg _,  (kMp)
L; = A, L, o (6.4)
2
Since (kM p). > 0 the direct-axis tfransient reactance X = wlL} is always less

Lrr
than the direct-axis synchronous reactance X,; = wl, .



Transient and sub-transient effects m

In defining X, we assume that the field is the only physical rotor winding.

» Most salient-pole machines of practical importance have damper
windings consisting of shorted copper bars through the pole faces of the
rotor

> In a round-rotor machine, under short-circuit conditions eddy currents
are induced in the solid rotor as if in damper windings.

The effects of the eddy-current damping circuits can be represented by

direct-axis and quadratfure-axis closed coils, which are treated in very

much the same way as the field winding except that they have no applied

voltage i
fo—— — ol
+ R, kM, R +
—
f_ v \ Field winding Ly L, V¢  d-axis armature equivalent winding
R .
p kM . . u)/\q
0 + d-axis f1 \ (13
Yr = vy ﬁ Lo,
%
+.
= daXIS - + D- damp r windin g
yp=0 .

Ly
t =0 N q_axis _Q-damper winding ; _ A o
L v =10 Lg q v, g-axis armature equivalent winding
q /- vq = ' . o why
wz\d =0 _ + -

-axis =
g-axis ™y g-axis

Li




Transient and sub-transient effects

» TwoO new circuits: i
< closed d-circuit, self-inductances L, - f’_—’\ﬁj\
< closed g-circuit, self-inductances L, ,,,,,b Fiold winding Ly
> Steady state condition: e
< The flux linkages are constant + AN
between all circuits on the Dot winding
same rotor axis. vp = 0 Lo
% D- and Q-circuits are then | ‘L_l

passive and do not enter intfo ,
steady-state analysis. Bl Sttt

AR
> Short-circuit conditions: Q-damper winding
< The initial d-axis flux-linkage B te
changes resulting from sudden F—l
shorting of the synchronous g-axis
machine with damper- Figure 15
winding effects. Equivalent circuit of the salient-

pole synchronous generator
with one field winding and two
damper windings on the rotor.



Transient and sub-transient effects

The field and D-damper circuits representing closed physical windings are
mutually coupled to each other and to the d-coil representing the armature
along the direct axis.

There cannot be sudden change in the flux linkages of the closed windings,
and so we can write for the flux-linkage changes along the d-axis:

These equations are similar to Equations (6.1) and (6.2) but they have extra
terms because of the additional self- and mutual inductances associated
with the D-damper circuit.

M, relates to mutual coupling between rotor-based windings on the d-axis
and thus has no k = /3/2 My multiplier.



Transient and sub-transient effects
Solving Eags. (6.6)and (6.7), for Ai and Aip in terms of Aiy yields:

. [(kMg)Lp-(kMpD)M,] , .
Alf = — LffLD—M7% ]Ald (68)
. (kMD)Lff—(ka)Mr] ,

and substituting these results into the A1, expression of EQ. (6.5) yields the
direct-axis sub-transient inductance L,; defined by:

AMa _ g _ 7 12
s =Lg =Ly k[

(6.10)

2 2
MfLD+MDLff—2MfMDMr]
LffLp—M7

The direct-axis sub-tfransient reactance X, defined as X;= wL}, is
considerably smaller than X;, which means that:

Similar reactances can be defined for the g-axis.



Transient and sub-transient effects

The synchronous machine has different reactances when it is subjected to
short-circuit faults at its terminails.

Reactance Xj

» Immediately upon occurrence of the short circuit

» Combines with an effective resistance determined by the damping
circuits to define a direct-axis,

» Short-circuit sub-transient time-constant 7' in the range of 0.03 s.

» Sub-transient period typically 3 to 4 cycles of system frequency

Reactance X

» When the damper-winding currents decay to negligible levels
» Short-circuit tfransient time-constant T,

» Transient period and T, is of the order of 1 s

Reactance X,
» Sustained steady-state conditions
» d- and g-axis reactances X; = wlg and X, = wl,

The various reactances supplied by the machine manufacturers are usually
expressed in per unit based on the nameplate rating of the machine while
time constants or given in seconds.



Transient and sub-transient effects
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