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Description of the synchronous machine 3

The synchronous machine as an AC power generator, driven by a turbine, 
converting mechanical into electrical energy. This machine is the major 
electric power generating source throughout the world. When operating as 
a motor, the machine converts electrical energy to mechanical energy. 
Our interests refer to the applications of the synchronous machine within a 
large interconnected power system, mainly considering the following 
conditions:
Ø steady-state;
Ø electromechanical transients.



Description of the synchronous machine 4

The two principal parts or a synchronous machine are ferromagnetic 
structures:

Ø The stationary part:
v Called stator or armature
v Essentially a hollow cylinder
v Has longitudinal slots with coils of the armature windings. 
v These windings carry the current supplied to an electrical load by a 

generator (or received from an ac supply by a motor)

Ø The rotating part:
v Called rotor 
v Mounted on the shaft and rotates inside the hollow stator. 
v The winding on the rotor is called the field winding 
v The field winding is supplied with DC current.

The resultant flux across the air gap between the stator and rotor generates 
voltages in the coils of the armature windings and provides the 
electromagnetic torque between the stator and rotor. 
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Description of the synchronous machine 7

If the machine is a generator, the shaft is driven by a prime mover, which is 
usually a steam, gas or hydraulic turbine. As we have seen before, the 
electromagnetic torque developed in the generator when it delivers power 
opposes the torque of the prime mover.
 
When the machine operates as a motor, the electromagnetic torque 
developed in the machine (except for core and friction losses) is converted 
to the shaft torque which drives the mechanical load.

The DC current is supplied to the field winding 
by an exciter, which may be:

Ø A generator mounted on the same shaft 
Ø A separate DC source connected to the 

field winding through brushes bearing on slip 
rings (as in Fig. 1).

Large AC generators usually have exciters 
consisting of an AC source with solid-state 
rectifiers. 

Fig. 1
Exploded view of 

a synchronous machine



Description of the synchronous machine 8

Figure 2  shows the simplified cross-
section view of a two-pole cylindrical 
machine of a generator called 
round-rotor machine (or nonsalient 
rotor).

Ø The field winding (rotor), indicated 
by the f-coil, gives rise to two poles 
N and S as marked.

Ø The axis of the field poles is called 
the direct axis or simply the d-axis

Ø The centerline of the interpolar 
space is called the quadrature 
axis or simply the q-axis. 

Ø The positive direction along the
d-axis leads the positive direction 
along q-axis by 90° (as shown in 
the figure). Figure 2

 Elementary three-phase AC generator



Description of the synchronous machine 9

Rotor
In the actual machine the winding 
has a large number of turns 
distributed in slots around the 
circumference of the rotor. 
The strong magnetic field produce 
links the stator coils to induce 
voltage in the armature windings as 
the shaft is turned by the prime 
mover. 

Stator
Ø The opposite sides of a coil, are in 

slots a and a’, 180° apart.
Ø For a three phase machine, 

identical coils are in slots b and b’, 
and slots c and c’.

Ø Coil sides in slots a, b, c are 120° 
apart.

The conductors shown in the slots 
indicate a coil of only one turn, but 
such a coil may have many turns 
and is usually in series with identical 
coils in adjacent slots to form a 
winding having ends designated a 
and a’. 



Description of the synchronous machine 10

Figure 3 shows a salient-pole 
machine which has four poles (i.e., 2 
pole pairs).
The different numbers of poles, with 
respect to Figure 2, has the following 
consequences:
Ø The opposite sides of an armature 

coil are 90° apart. So, there are 
two coils for each phase. 

Ø Coil sides a, b, and c of adjacent 
coils are 60° apart. 

Ø The two coils of each phase may 
be connected in series or in 
parallel.

Although not shown in Fig. 2, salient-pole machines usually have damper 
windings, which consist of short-circuited copper bars through the pole.
The purpose of the damper winding is to reduce the mechanical 
oscillations of the rotor about synchronous speed. This aspect will be 
discussed later.

Figure 3
 Cross section of an elementary stator and 

salient-pole rotor



Description of the synchronous machine 11

Obs #1: the windings of the polyphase synchronous machine constitute a 
group of inductively coupled electric circuits, some of which rotate relative 
to others so that mutual inductances are variable. 

Hp#1: Only linear magnetic circuits are considered. Therefore, the saturation 
of magnetic parts is neglected. 

Obs#2: Hp#1 allows us to refer separately to the flux and flux linkages 
produced by a magnetomotive force (mmf). Pay attention that in any 
electric machine there exists only the net physical flux due to the resultant 
mmf of all the magnetizing sources (i.e., the rotor and the stator one).



Description of the synchronous machine 12

In the two-pole machine one cycle of voltage is generated for each 
revolution of the two-pole rotor while in the four-pole machine two cycles 
are generated in each coil per revolution, as shown if Figure 4. 

Figure 4.2 Four-pole generator
(1) Winding beginning
(2) Winding end
(3) Voltage
(4) A cycle of the voltage
(5) A rotation of the shaft = 2 cycles
(7) Coil
(8) Coil connection

= 4

Figure 4.1 Two-pole generator
(1) Winding beginning
(2) Winding end
(3) Voltage
(4) A cycle of the voltage
(6) A rotation of the shaft = 1 cycle
(7) Coil



Description of the synchronous machine 13

Ø In the two-pole machine one cycle of voltage is generated for each 
revolution of the two-pole rotor. 

Ø In the four-pole machine two cycles are generated in each coil per 
revolution. 

Since the number of cycles per revolution equals the number of pairs of 
poles, the frequency of the generated voltage is

𝑓 = !
"
#
$%
= 𝑝 #

$%
= !

"
𝑓&	 	 	 										(1.1) 

Where:
𝑓 = electrical frequency in Hz
𝑃 = number of poles  ( 𝑝 = number of pairs of poles )
𝑁 = rotor speed in rpm
𝑓! = 𝑁/60 = mechanical frequency in revolution per seconds (Hz)

Eq.(1.1) tells us that there is a strict equality constraint between the 
mechanical frequency (i.e. rotation speed) of the machine and its electrical 
frequency. A two-pole, 50 Hz machine operates at 3000 rpm, whereas a 
four-pole machine operates at 1500 rpm. 
Usually, fossil-fired steam turbo-generators are two-pole machines, whereas 
hydro-generating units are slower machines with many pole pairs. 



Description of the synchronous machine 14

Since one cycle of voltage (360° of the voltage wave) is generated every 
time a pair of poles passes a coil, we must distinguish between electrical 
degrees used to express voltage and current and mechanical degrees 
used to express the position of the rotor. 

Ø In a two-pole machine electrical and mechanical degrees are equal. 
Ø In a four-pole machine, therefore, two cycles, or 720° electrical degrees, 

are produced per revolution of 360° mechanical degrees. 

In any machine the number of electrical degrees or radians equals 𝑷/𝟐 = 𝒑 
times the number of mechanical degrees or radians, as can be seen from 
Eq. (1.1) by multiplying both sides by 𝟐𝝅. 
All angular measurements are going to be expressed in electrical degrees 
and the direct axis always leads the quadrature axis by 90 electrical 
degrees in the counter-clockwise direction of rotation

Figure 4
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Three-phase generation
Armature winding

16

Ø Coils a, b, c represent the three 
armature windings on the stator of 
the round-rotor machine

Ø Concentrated coil f represents the 
distributed field winding on the rotor

Ø The three stationary armature coils 
are identical in every respect and 
each has one of its two terminals 
connected to a common point ‘O’. 

Ø The axis of coil 𝒂 is chosen at 𝜃" = 0°
Ø Counter-clock wise around the air 

gap the axes of the b-coil is chosen 
at 𝜽𝒅 = 𝟏𝟐𝟎°

Ø Counter-clock wise around the air 
gap the axes of the c-coil is chosen 
at 𝜽𝒅 = 𝟐𝟒𝟎°

Figure 5
Idealized three-phase generator 
showing identical armature coils a, b 
and c and field coil f. Direct axis leads 
quadrature axis by 90° in the 
anticlockwise direction of rotation. 



Three-phase generation 17
Hypothesis:
1. Coils a, b, c have self-inductance 

𝑳𝒔 respectively equal to the self-
inductances 𝐿%% , 𝐿&& , 𝐿''  of the 
distributed armature windings 
which the coils represent so that:

𝐿( = 𝐿%% = 𝐿&& = 𝐿''
2. The mutual inductances 𝑳𝒂𝒃, 𝑳𝒃𝒄 

and 𝑳𝒂𝒄 between each adjacent 
pair of concentrated coils are 
negative constants denoted by 
−𝑀,:

−𝑀( = 𝐿%& = 𝐿&' = 𝐿'%
3. The field coil has a constant self-inductance 𝑳𝒇𝒇
4. Currents 𝑖% , 𝑖& , 𝑖' are a balanced three-phase set of currents: 𝑖% + 𝑖& + 𝑖' = 0 
5. The mutual inductance between the field coil 𝒇 and each of the stator coils 

varies with the rotor position 𝜃" as a cosinusoidal function with maximum 
value 𝑀. so that: 

𝐿%. = 𝑀. 𝑐𝑜𝑠𝜃"                𝐿&. = 𝑀. 𝑐𝑜𝑠(𝜃"−120°)           𝐿'. = 𝑀. 𝑐𝑜𝑠(𝜃"−240°)

Figure 5



Three-phase generation 18
Flux linkages with each of the coils a, b, c and f are due to its own current 
and the currents in the three other coils. 
Flux-linkage equations are therefore written for all four coils as follows: 

𝜆% = 𝐿%%𝑖% + 𝐿%&𝑖& + 𝐿%'𝑖' + 𝐿%.𝑖. 
Armature:  𝜆& = 𝐿&%𝑖% + 𝐿&&𝑖& + 𝐿&'𝑖' + 𝐿&.𝑖.            (2.1)

𝜆' = 𝐿'%𝑖% + 𝐿'&𝑖& + 𝐿''𝑖' + 𝐿'.𝑖. 

Field:   𝜆. = 𝐿%.𝑖% + 𝐿&.𝑖& + 𝐿'.𝑖' + 𝐿..𝑖.            (2.2)

Taking into consideration the previous hypothesis, the flux linkage equations 
(2.1),(2.2) can be transformed in such a way:

Armature:
𝜆% = 𝐿%%𝑖% + 𝐿%&𝑖& + 𝐿%'𝑖' + 𝐿%.𝑖. = 𝐿(𝑖% −𝑀( 𝑖& + 𝑖' + 𝐿%.𝑖. 
𝜆& = 𝐿&%𝑖% + 𝐿&&𝑖& + 𝐿&'𝑖' + 𝐿&.𝑖. = 𝐿(𝑖& −𝑀( 𝑖% + 𝑖' + 𝐿&.𝑖.            (2.3)
𝜆' = 𝐿'%𝑖% + 𝐿'&𝑖& + 𝐿''𝑖' + 𝐿'.𝑖. = 𝐿(𝑖' −𝑀( 𝑖% + 𝑖& + 𝐿'.𝑖. 
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Remember that, if we consider 𝑖% , 𝑖& , 𝑖' as a balanced three-phase set of 
currents, we have: 

𝑖% + 𝑖& + 𝑖' = 0
𝑖% = − 𝑖& + 𝑖'
𝑖& = −(𝑖% + 𝑖') 
𝑖' = −(𝑖% + 𝑖&) 

By introducing these last equations into Eq. (2.3) we obtain:

𝜆% = 𝐿( +𝑀( 𝑖% + 𝐿%.𝑖. 
𝜆& = 𝐿( +𝑀( 𝑖& + 𝐿&.𝑖.                 (2.4)
𝜆' = 𝐿( +𝑀( 𝑖' + 𝐿'.𝑖. 

STEADY STATE HYPOTESYS:

Ø The current 𝑖. is DC with a constant value 𝐼.
Ø The field rotates at constant angular velocity 𝜔 so that for the two-pole 

machine 
"/!
"0

= 𝜔          and        𝜃" = 𝜔𝑡 + 𝜃"1
Where 𝜃"1 can be arbitrarily chosen at 𝑡 = 0.

Three-phase generation
Armature winding
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Eqs. (2.4), by knowing that:

𝐿%. = 𝑀. 𝑐𝑜𝑠𝜃"                𝐿&. = 𝑀. 𝑐𝑜𝑠(𝜃"−120°)          𝐿'. = 𝑀. 𝑐𝑜𝑠(𝜃"−240°) 
and considering steady state condition become:

𝜆% = 𝐿( +𝑀( 𝑖% +𝑀.𝐼.cos(𝜔𝑡 + 𝜃"1) 
𝜆& = 𝐿( +𝑀( 𝑖& +𝑀.𝐼.cos(𝜔𝑡 + 𝜃"1 − 120°)                     (2.5)
𝜆' = 𝐿( +𝑀( 𝑖' +𝑀.𝐼.cos(𝜔𝑡 + 𝜃"1 − 240°) 

Figure 5

The first of these equations shows that 𝝀𝒂 has 
two flux-linkage components:

Ø One due to the field current 𝑰𝒇
Ø One due to the armature current 𝒊𝒂 

(which is flowing out of the machine stator 
to generate power towards the external 
load)

The same can be applied for the other two 
phases.

Three-phase generation
Armature winding
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If coil a has resistance 𝑅, then the voltage drop 𝑣% across the coil from 
terminal a to terminal 𝑂 in Fig. 5 is given by: 

𝑣% = −𝑅𝑖% −
"2"
"0

= −𝑅𝑖% − 𝐿( +𝑀(
"3"
"0
+ 𝜔𝑀.𝐼.sin(𝜔𝑡 + 𝜃"1)             (2.6)

The negative signs apply because the machine is being treated as a 
generator. The last term of Eq. (2.6) represents an internal electromotive 
force (emf), which we now call 𝑒%# . This emf can be written as:  

   𝑒%# = 2 𝐸3 sin(𝜔𝑡 + 𝜃"1)                  (2.7)
where: 𝐸3 =

45$6$
7

The action of the field current causes 𝒆𝒂8  to appear across the terminals of 
the a-phase when 𝒊𝒂 is zero, and so it is called by various names such as:

v No-load voltage
v Open-circuit voltage
v Synchronous internal voltage
v Generated emf of phase a

Three-phase generation
Armature winding
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In Eqs.(2.6) and (2.7) the angle 𝜽𝒅𝟎 indicates the position of the field winding 
(and the d-axis) relative to the a-phase at 𝒕 = 𝟎. Hence, 𝜹 = 𝜃"1 − 90° 
indicates the position of the q-axis, which is 90° behind the d-axis in Fig. 5.

For later convenience we now set 𝜃"1 = 𝛿 + 90° and then we have:

𝜃" = 𝜔𝑡 + 𝜃:1 = 𝜔𝑡 + 𝛿 + 90°              (2.8)

where 𝜃" , 𝜔 and 𝛿 have consistent units of angular measurement. 
Substituting from Eq. (2.8) into Eq. (2.7) and noting that 𝑠𝑖𝑛 𝛼 + 90° = 𝑐𝑜𝑠 𝛼
we obtain for the open-circuit voltage of phase a:
   𝑒%# = 2 𝐸3 cos(𝜔𝑡 + 𝛿)                  (2.9)

The terminal voltage	𝑣% of Eq. (2.6) is then given by:

𝑣% = −𝑅𝑖% − 𝐿( +𝑀(
"3"
"0
+ 2 𝐸3 cos(𝜔𝑡 + 𝛿)            (2.10)

 
This equation corresponds to the a-phase circuit of Fig. 6 in which the no-
load voltage 𝒆𝒂# 	is the source and the external load is balanced across all 
three phases.

Three-phase generation
Armature winding



23

It is possible to apply the same for the no-load voltages 𝑒&#, and 𝑒'# which 
lag 𝑒%# by 120° and 240°, respectively.
Hence, 𝒆𝒂# , 𝒆𝒃# and 𝒆𝒄# constitute a balanced three-phase set of emfs which 
give rise to balanced three-phase line currents, say: 

𝑖% = 2 𝐼% cos 𝜔𝑡 + 𝛿 − 𝜃%   
𝑖& = 2 𝐼% cos 𝜔𝑡 + 𝛿 − 𝜃% − 120°                     (2.11) 
𝑖' = 2 𝐼% cos 𝜔𝑡 + 𝛿 − 𝜃% − 240°  

Where:
Ø 𝐼%  is the rms value 
Ø 𝜽𝒂 is the phase angle of the current 
𝒊𝒂 with respect to 𝒆𝒂#.

Figure 6
Armature equivalent circuit of the 

idealized three-phase generator 
showing balanced no-load voltages 

𝑒!! , 𝑒"! , 𝑒#! in the steady state 

Three-phase generation
Armature winding
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As previously done with the armature coil, the target is to find expressions for 
flux linkage and current related to the field winding. To do that, it is possible 
to start by substituting the definition of 𝐿%. , 𝐿&. , 𝐿'.:

𝐿%. = 𝑀. 𝑐𝑜𝑠𝜃"                𝐿&. = 𝑀. 𝑐𝑜𝑠(𝜃"−120°)          𝐿'. = 𝑀. 𝑐𝑜𝑠(𝜃"−240°) 

into Eq. (2.2), which states that 𝜆. = 𝐿%.𝑖% + 𝐿&.𝑖& + 𝐿'.𝑖' + 𝐿..𝑖., to yield:

𝜆. = 𝐿..𝐼. +𝑀. 𝑖% cos 𝜃" + 𝑖& cos 𝜃" − 120° + 𝑖' cos 𝜃" − 240°          (2.12)

This expression for the flux will be 
simplified in the following slides.

Three-phase generation
Field winding

Figure 7
Representing the armature of the 
synchronous machine by a direct-axis 
winding of mutual inductance 3/2𝑀$ 
with the field winding. Both windings 
rotate together in synchronism.
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Knowing that: 𝜃" = 𝜔𝑡 + 𝛿 + 90°, the first term within the brackets Eq. of (2.12) 
can be written as:

𝒊𝒂 cos 𝜃" = 𝟐 𝑰𝒂 𝐜𝐨𝐬 𝝎𝒕 + 𝜹 − 𝜽𝒂 cos 𝜔𝑡 + 𝛿 + 90° (2.13)

Considering that: 2 cos 𝛼 cos 𝛽 = cos 𝛼 − 𝛽 + cos 𝛼 + 𝛽

𝑖% cos 𝜃" =
6"
7
−sin 𝜃% − sin 2 𝜔𝑡 + 𝛿 − 𝜃%

𝑖& cos 𝜃" − 120° = 6"
7
−sin 𝜃% − sin 2 𝜔𝑡 + 𝛿 − 𝜃% − 120° (2.14)

𝑖' cos 𝜃" − 240° = 6"
7
−sin 𝜃% − sin 2 𝜔𝑡 + 𝛿 − 𝜃% − 240°

The terms involving 2𝜔𝑡  in Eqs. (2.14) are balanced second harmonic 
sinusoidal quantities which sum to zero at each point in time. Hence, adding 
the bracketed terms of Eq. (2.14) together, we obtain:

𝑖% cos 𝜃" + 𝑖& cos 𝜃" − 120° + 𝑖& cos 𝜃" − 240° = − 	< 6"
7
sin 𝜃%  (2.15)

Three-phase generation
Field winding
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If we substitute Eq. (2.15) into Eq.(2.12) for the flux linkages 𝜆. we obtain:

  𝜆. = 𝐿..𝐼. −
<5$ 6"

7
sin 𝜃% = 𝐿..𝐼. + 3/2	𝑀.𝑖"                      (2.16)

where the DC current 𝑖" is defined as:

𝑖" = − 3 𝐼% sin 𝜃%          (2.17a)

or else:

𝑖" = 2/3 𝑖% cos 𝜃" + 𝑖& cos 𝜃" − 120° + 𝑖& cos 𝜃" − 240° (2.17b)

In general, the field winding with resistance 𝑅. and entering current 𝑖. has 
terminal voltage 𝑣..# given by:

𝑣..# = 𝑅.𝑖. +
"2$
"0

           (2.18)

Because 𝜆. is not varying with time in the steady state, the field voltage 
becomes 𝑣..# = 𝑅.𝐼. and 𝑖. = 𝐼. can be supplied by a DC source. 

Three-phase generation
Field winding
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We now recall the obtained equation (2.16) for the flux linkages 𝜆.:

   𝜆. = 𝐿..𝐼. + 3/2	𝑀.𝑖"              (2.16)

Observations: 

Ø The flux linkages with the field 
winding due to the combination of 
𝑖%, 𝑖& and 𝑖' do not vary with time. 

Ø We can regard those flux linkages 
as coming from the steady DC 
current 𝒊𝒅 in a fictitious DC circuit 
coincident with the d-axis

Ø The fictitious DC circuit is stationary 
with respect to the field circuit. 

Ø The two circuits rotate together in 
synchronism end have a mutual 
inductance 𝟑/𝟐𝑴𝒇.

Figure 7

Three-phase generation
Field winding



28

Armature:
𝜆! = 𝐿% +𝑀% 𝑖! +𝑀$𝐼$cos(𝜔𝑡 + 𝜃&') 
𝜆" = 𝐿% +𝑀% 𝑖" +𝑀$𝐼$cos(𝜔𝑡 + 𝜃&' − 120°)        (2.5)
𝜆# = 𝐿% +𝑀% 𝑖# +𝑀$𝐼$cos(𝜔𝑡 + 𝜃&' − 240°) 

𝑣! = −𝑅𝑖! − 𝐿% +𝑀%
&("
&)
+ 𝑒!!                            (2.10)

𝑒!! = 2 𝐸( sin(𝜔𝑡 + 𝜃&')                     (2.7)
where 𝐸( =

*+#,#
-

𝑖! = 2 𝐼! cos 𝜔𝑡 + 𝛿 − 𝜃!   
𝑖" = 2 𝐼! cos 𝜔𝑡 + 𝛿 − 𝜃! − 120°                      (2.11) 
𝑖# = 2 𝐼! cos 𝜔𝑡 + 𝛿 − 𝜃! − 240°  
Field:

𝜆$ = 𝐿$$𝐼$ −
.+# ,"

- sin 𝜃! = 𝐿$$𝐼$ + 3/2	𝑀$𝑖&    (2.16)

𝑣$$! = 𝑅$𝑖$ +
&/#
&)

                               (2.18)

𝑖& = − 3 𝐼! sin 𝜃& (2.17)

Three-phase generation
Summary

Hypothesis:
Balanced three-phase system + Steady state
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Synchronous reactance and equivalent circuits 30

The coupled-circuit model in Fig. 6 represents the idealized Y-connected 
round-rotor synchronous machine. 
If the machine is rotating at synchronous speed 𝝎 and that the field current 
𝑰𝒇 is steady DC, the balanced three-phase circuit of Fig. 5 gives the steady-
state operation of the machine. 
The no-load voltages are the emfs 𝒆𝒂# , 𝒆𝒃# and 𝒆𝒄#.  

Figure 5 Figure 6



Synchronous reactance and equivalent circuits 31

The per-phase equivalent circuit with steady-state sinusoidal currents and 
voltages is shown in Fig. 8(a). Now if we recall Eq. (2.11):

𝑖% = 2 𝐼% cos 𝜔𝑡 + 𝛿 − 𝜃%                  (2.11)

we can note that the phase angle of the current 𝑖% in Eq. (2.11) is chosen 
with respect to the no-load voltage 𝑒%, of the a-phase. 

Figure 8 (a):
Equivalent circuit for reference 
phase a of the synchronous 
machine showing voltages 
and currents as cosinusoidal 
quantities. 

In practice, 𝒆𝒂 cannot be measured 
under load, and so it is preferable to 
choose the terminal voltage 𝑣%  as 
reference and to measure the phase 
angle of the current 𝒊𝒂 with respect to 
𝒗𝒂. Therefore, we define:

𝑣% = 2 𝑉% cos𝜔𝑡   (3.1)
𝑒%#= 2 𝐸0 cos 𝜔𝑡 + 𝛿             (3.2)
𝑖% = 2 𝐼% cos 𝜔𝑡 − 𝜃             (3.3)

Where 𝜃 = 𝜃% − 𝛿 is now the the angle 
of lag of 𝑖% with respect to 𝑣%.
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The phasor equivalents of Eqs. (3.1), 
(3.2) and (3.3), are:

h𝑉% = 𝑉% ∠0°                         (3.4)
h𝐸%# = 𝐸0 ∠𝛿°                         (3.5)
̅𝐼% = 𝐼% ∠ −𝜃 °                    (3.6)

Ø When the current ̅𝐼% leads h𝑉% the 
angle 𝜃 is numerically negative 

Ø When ̅𝐼% lags h𝑉% , the angle 𝜃  is 
numerically positive

 
The phasor-voltage equation is:

Figure 8 (b):
Equivalent circuit for reference 
phase a of the synchronous 
machine showing voltages 
and currents as phasor 
quantities. 

Since symmetrical conditions apply, phasor equations corresponding to Eq. 
(3.7) can be written for b-phase and c-phase as well with lags of −120° and 
240°.

h𝑉% = h𝐸3 − 𝑅 ̅𝐼% − 𝑗𝜔𝐿( ̅𝐼% − 𝑗𝜔𝑀( ̅𝐼%
Generated 
at no load

Due to armature 
resistance

Due to armature 
self-reactance

Due to armature 
mutual-reactance

(3.7)
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The combined quantity 𝜔(𝐿( 	+ 	𝑀()	of Eq. (3.7) has the dimensions of 
reactance and is customarily called the synchronous reactance 𝑿𝒅 of the 
machine. The synchronous impedance m𝒁𝒅 of the machine is defined by

𝑍̅" = 𝑅 + 𝑗𝑋" = 𝑅 + 𝑗𝜔 𝐿( +𝑀(           (3.8)
 
and Eq. (3.7) then can be written in the more compact form 

h𝑉% = h𝐸3 − ̅𝐼%𝑍̅" = h𝐸3 − ̅𝐼%𝑅 − 𝑗 ̅𝐼%𝑋"          (3.9)

The equivalent circuit for the synchronous motor is identical to that of the 
generator, except that the direction of h𝑰𝒂 is reversed, as shown in Fig. 9(b), 
which has the equation:

h𝑉% = h𝐸3 + ̅𝐼%𝑍̅" = h𝐸3 + ̅𝐼%𝑅 + 𝑗 ̅𝐼%𝑋"        (3.10)

Generated 
at no load

Due to armature 
resistance

Due to armature 
self-reactance

Due to armature 
mutual-reactance

(3.7)h𝑉% = h𝐸3 − 𝑅 ̅𝐼% − 𝑗𝜔𝐿( ̅𝐼% − 𝑗𝜔𝑀( ̅𝐼%
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Phasor diagrams for the previous equations are shown in Fig. 9. For the 
generator note that h𝐸3 always leads h𝑉%, and for the motor h𝐸3 always lags h𝑉%.

A𝑉! = A𝐸( − ̅𝐼!𝑍̅& = A𝐸( − ̅𝐼!𝑅 − 𝑗 ̅𝐼!𝑋& A𝑉! = A𝐸( + ̅𝐼!𝑍̅& = A𝐸( + ̅𝐼!𝑅 + 𝑗 ̅𝐼!𝑋&

Figure 9(a)
Equivalent circuits for a synchronous 
generator and phasor diagrams of an 
over-excited generator delivering 
lagging current ̅𝐼!

Figure 9(b)
Equivalent circuits for a synchronous 
motor and phasor diagrams of an 
under-excited motor drawing lagging 
current ̅𝐼!

Generator Motor
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Except for the case of an isolated 
generator supplying its own load, 
most synchronous machines are 
connected to large interconnected 
power systems.

In this case the terminal voltage m𝑽𝒂 
(soon to be called h𝑉0 for emphasis) 
is not altered by machine loading. 

The point of connection is therefore 
called an infinite bus, which means 
that its voltage remains constant 
and no frequency change occurs 
regardless of changes made in 
operating the synchronous ma-
chine.

Generator

Figure 9(a)
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When the synchronous machine is connected to an infinite bus, its speed 
and terminal voltage are fixed and unalterable.
 
Two controllable variables, however, are:
Ø The field current
Ø The mechanical torque on the shaft. 

The variation of the field current 𝑰𝒇 referred to as excitation system control, 
is applied to either a generator or a motor to supply or absorb a variable 
amount of reactive power.
 
Because the synchronous machine runs at constant speed, the only means 
of varying the real power is through control of the torque imposed on the 
shaft by either the prime mover in the case of a generator or the 
mechanical load in the case of a motor.

Important: it is not possible to change the active power of a machine by 
changing the excitation current.
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Figure 10
Phasor diagrams showing:
(a) Over-excited generator delivering 

reactive power to the system; 
(b) Under-excited generator receiving 

reactive power from the system. 
The power delivered is the same in both 
cases (because 𝐼$ cos 𝜃 is the same). 

Remember that
(see slide 21)

𝐸! =
𝜔𝑀"𝐼"

2

It is convenient to neglect resistance as 
we consider reactive power control of 
the round-rotor generator. Assume that 
the generator is delivering power so 
that a certain angle 𝜹 exists between 
the terminal voltage h𝑉0  and the 
generated voltage h𝐸3 of the machine.

The complex power delivered to the 
system by the generator is given in per 
unit by:

̅𝑆 = 𝑃 + 𝑗𝑄 = h𝑉0 ̅𝐼%∗
= h𝑉0 ̅𝐼% cos 𝜃 + 𝑗 sin 𝜃        (4.1)

Equating real and imaginary quantities 
in this equation, we obtain: 

 𝑃 = h𝑉0 ̅𝐼% cos 𝜃 (4.2)
Q = h𝑉0 ̅𝐼% sin 𝜃     (4.3)
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Observations:
Ø 𝑄 is positive for lagging power factors since the angle 𝜃 is numerically 

positive. 
Ø To maintain a certain power delivery 𝑃 from the generator to the 

constant voltage system, ̅𝐼% cos 𝜃 must remain constant. 
Ø As we vary the DC field current 𝐼. under these conditions, the generated 

voltage h𝐸3, varies proportionally but always so as to keep ̅𝐼% cos 𝜃 
constant

Different excitation conditions:

v Normal excitation is defined as the condition when h𝐸3 cos 𝛿 = h𝑉0
v Over-excited when h𝐸3 cos 𝛿 > h𝑉0  
v Under-excited when h𝐸3 cos 𝛿 < h𝑉0 .

Ø For the condition of over-excited generator, this supplies reactive power 
𝑄 to the system. Thus, from the system viewpoint the machine is acting 
like a capacitor. 

Ø An under-excited generator supplying the same amount of real power 
and a leading current to the system draws reactive power from the 
system and in this respect acts like an inductor. 
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Figure 11 shows overexcited and under-
excited synchronous motors drawing the 
same real power at the same terminal 
voltage. 
Ø The over-excited motor draws leading 

current and acts like a capacitive 
circuit when viewed from the network 
to which it supplies reactive power. 

Ø The under-excited motor draws lagging 
current, absorbs reactive power, and is 
acting like an inductive circuit when 
viewed from the network. 

In general:
Ø Over-excited generators and motors 

supply reactive power to the system
Ø Under-excited generators and motors 

absorb reactive power from the system. 

Motor

Figure 11
Phasor diagrams showing:
(a) Over-excited motor
(b) Under-exited motor 
Both drawing current 𝐼$ and constant 
power at constant terminal voltage. 

Real and reactive power control
Reactive power
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The real power 𝑃 is controlled by opening or closing the valves through 
which steam (or water) enters a turbine in order to change the torque.

The machine goes through the following steps:

1. If the power input to the generator is increased, the rotor speed will start 
to increase

2. If the field current 𝐼. and hence h𝐸3  are held constant, the angle 𝜹 
between m𝑬𝒊 and m𝑽𝒕 will increase. 

3. Increasing 𝛿 results in a larger h𝑰𝒂 𝐜𝐨𝐬𝜽, as may be seen by rotating the 
phasor h𝐸3 counter-clockwise in Figs. 10(a) and 10(b). 

4. The generator with a larger 𝛿 delivers more power to the network and 
develops an higher counter-torque on the prime mover

5. The input from the prime mover is re-established at the speed 
corresponding to the frequency of the infinite bus

Real and reactive power control
Active power
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The dependence of 𝑷 on the power angle 𝜹 between m𝑬𝒊 and m𝑽𝒕 is also 
shown as follows. By considering :

h𝑉0 = h𝑉0 ∠0°    and
h𝐸3 = h𝐸3 ∠𝛿

where h𝑉0 and h𝐸3 are expressed in volts to neutral or in per unit, then:

̅𝐼% =
@A% ∠CD|FG&|
HI!

  and  ̅𝐼%∗ =
@A% ∠DCD|FG&|
DHI!

          (4.4)

Therefore, the complex power delivered to the system at the terminals of 
the generator is given by

̅𝑆 = 𝑃 + 𝑗𝑄 = h𝑉0 ̅𝐼%∗ =
( ()6 *+7 ∠-.)- ()6 8

-019
(4.5)

̅𝑆 = 
()6 *+7 234 .-0 456 . - ()6 8

-019
 (4.6)

Real and reactive power control
Active power
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The complex power delivered to the system at the terminals of the generator 
is given by

̅𝑆 = 𝑃 + 𝑗𝑄 =
h𝑉0 h𝐸3 cos 𝛿 − 𝑗 sin 𝛿 − h𝑉0 7

−𝑗𝑋"

The real and imaginary parts:

𝑃 =
FG& @A%
I!

sin 𝛿  Q =
FG&
I!

h𝐸3 cos 𝛿 − h𝑉0 (4.7)

These two equations (identical to those we derived for a lossless and shunt-less 
transmission line) shows clearly the following:
Ø The dependence of 𝑃 on the power angle 𝛿 if h𝐸3  and h𝑉0  are constant. 
Ø If 𝑃 and h𝑉0 are constant, 𝛿 must decrease if h𝐸3  is increased by boosting the 

DC field excitation. 
Ø With 𝑃 constant, both an increase in | h𝐸3| and a decrease in 𝛿 mean that 𝑄 

will increase if it is already positive, or it will decrease in magnitude and 
perhaps become positive if 𝑄 is already negative before the field excitation 
is boosted.
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Q =
h𝑉0
𝑋"

h𝐸3 cos 𝛿 − h𝑉0

𝑃 =
h𝑉0 h𝐸3
𝑋"

sin 𝛿

When the synchronous machine is 
connected to an infinite bus, its speed 
and terminal voltage are fixed and 
unalterable 

Different excitation conditions:

v Normal excitation if   h𝐸3 cos 𝛿 = h𝑉0
v Over-excited when   h𝐸3 cos 𝛿 > h𝑉0  
v Under-excited when h𝐸3 cos 𝛿 < h𝑉0

Active and reactive power:

Real and reactive power control
Summary

Figure 10
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The round-rotor theory already developed good results, but with the 
hypothesis of for the steady-state.
However, for transient analysis we need to consider a two-axis model. 
The two-axis model will be introduced by means of the equations of the 
salient-pole machine:

Ø It these machines in which the air gap is much narrower along the direct 
axis than along the quadrature axis between poles.
v As a direct consequence, during each revolution of the rotor, the 

self inductances 𝐿%%, 𝐿&&, 𝐿'' of the stator windings, and the mutual 
inductances 𝐿%&, 𝐿&' , 𝐿'%, are not constant in but also vary as a 
function of the rotor angular displacement 𝜽𝒅 

Ø Despite this difference, the other characteristic are similar to the round 
rotor machine:
v Three symmetrically distributed armature windings a, b, c
v Field winding f on the rotor which produces a sinusoidal flux 

distribution around the air gap.
v The field winding has constant self-inductance 𝐿.. 
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The flux linkages of phases a, b, and c are related to the currents by the 
inductances so that:

𝜆% = 𝐿%%𝑖% + 𝐿%&𝑖& + 𝐿%'𝑖' + 𝐿%.𝑖. 
𝜆& = 𝐿&%𝑖% + 𝐿&&𝑖& + 𝐿''𝑖' + 𝐿&.𝑖.          (5.1)
𝜆' = 𝐿'%𝑖% + 𝐿'&𝑖& + 𝐿''𝑖' + 𝐿'.𝑖. 

These equations look the same as the one obtained before (2.1) but all the 
coefficient are variable, which makes them very hard to solve

Self inductances

𝐿## = 𝐿$ 
𝐿%% = 𝐿$ 
𝐿&& = 𝐿$ 

Mutual inductances

𝐿#% = 𝐿%# = −𝑀$ 
𝐿%& = 𝐿&% = −𝑀$ 
𝐿&# = 𝐿#& = −𝑀$ 

Armature/Field

𝐿#" = 𝐿"# = 𝑀" cos 2𝜃' 
𝐿%" = 𝐿"% = 𝑀" cos 2(𝜃' − 2/3𝜋) 
𝐿&" = 𝐿"& = 𝑀" cos 2(𝜃' − 4/3𝜋) 

Self inductances
(𝐿$> 𝐿( > 0)

𝐿## = 𝐿$ + 𝐿( cos 2𝜃' 
𝐿%% = 𝐿$ + 𝐿( cos 2(𝜃' − 2/3𝜋) 
𝐿&& = 𝐿$ + 𝐿( cos 2(𝜃' − 4/3𝜋) 

Mutual inductances
(𝑀$> 𝐿( > 0)

𝐿#% = 𝐿%# = −𝑀$ + 𝐿( cos 2(𝜃' − 𝜋/6) 
𝐿%& = 𝐿&% = −𝑀$ + 𝐿( cos 2(𝜃' − 3𝜋/6) 
𝐿&# = 𝐿#& = −𝑀$ + 𝐿( cos 2(𝜃' − 5𝜋/6)

Armature/Field

𝐿#" = 𝐿"# = 𝑀" cos 2𝜃' 
𝐿%" = 𝐿"% = 𝑀" cos 2(𝜃' − 2/3𝜋) 
𝐿&" = 𝐿"& = 𝑀" cos 2(𝜃' − 4/3𝜋) 

Salient-pole machine

Round-rotor machine
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Ø The equations of the salient-pole machine can be expressed in a simple 
form by transforming the a, b, and c variables of the stator into 
corresponding sets of new variables, called the direct-axis, quadrature-
axis, and zero-sequence quantities which are distinguished by the 
subscripts d, q and 0: respectively.

Ø The idea of transforming these 
equations comes from the fact 
that almost all parameters 
depend unequivocally on the 
displacement angle 𝜽𝒅. 

Ø For this reason, d and q are 
chosen as axes of reference 
system which rotates integrally 
with the rotor.

Figure 12

Representation of the salient-pole 
synchronous generator by armature-
equivalent direct-axis and quadrature-
axis coils rotating in synchronism with 
the field winding on the rotor. 
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The three stator currents 𝑖%, 𝑖& and 𝑖' can be transformed into three 
equivalent currents, called the direct-axis current 𝑖", the quadrature-axis 
current 𝑖J and the zero-sequence current 𝑖1. The transformation is made by 
the matrix 𝑷, called Park’s transformation

𝑷 = 7
<

cos 𝜃" cos 𝜃" − 120° cos 𝜃" − 240°
sin 𝜃" sin 𝜃" − 120° sin 𝜃" − 240°
1/ 2 1/ 2 1/ 2

            (5.2) 

Ø The 𝑃-transformation defines a set 
of currents, voltages, and flux 
linkages for three fictitious coils, 
one of which is the stationary 0-coil. 

Ø The other two coils are the d-coil 
and the q-coil, which rotate in 
synchronism with the rotor.

The d-coil and the q-coil have constant flux linkages with the field and any 
other windings which may exist on the rotor. 

Figure 12



The currents, voltages, and flux linkages of phases 𝑎, 𝑏,	 and 𝑐  are 
transformed by P to d, q, and 0 variables as follows:

𝑖"
𝑖J
𝑖1

= 𝑷
𝑖%
𝑖&
𝑖'

       
𝑣"
𝑣J
𝑣1

= 𝑷
𝑣%
𝑣&
𝑣'

𝜆"
𝜆J
𝜆1

= 𝑷
𝜆%
𝜆&
𝜆'

(5.3)

The matrix 𝑷 has the convenient property (called orthogonality) that its 
inverse 𝑷D𝟏 equals its transpose 𝑷𝑻, which is found simply by interchanging 
rows and columns in Eq. (5.2). 

This property ensures that power in the a, b, c variables is not altered by 𝑷. 

By applying Park’s transformation the resulting 𝑑, 𝑞, and 0 flux-linkage and 
inductance equations are:

𝜆" = 𝐿"𝑖" +
<
7
𝑀.𝑖. (5.4)

𝜆J = 𝐿J𝑖J (5.5)

𝜆1 = 𝐿1𝑖1 (5.6)
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𝐿" = 𝐿( +𝑀( +
<
7
𝐿! (5.7)

𝐿J = 𝐿( +𝑀( −
<
7
𝐿! (5.8)

𝐿1 = 𝐿( − 2𝑀( (5.9)



How to obtain Eqs. (5.4)-(5.9):
To transform a-b-c stator flux linkages to d-q-0 quantities by means of matrix 
𝑷 of Eq. (5.2), rearrange the flux-linkage expressions of Eq. (5.1):

𝜆% = 𝐿%%𝑖% + 𝐿%&𝑖& + 𝐿%'𝑖' + 𝐿%.𝑖. 
𝜆& = 𝐿&%𝑖% + 𝐿&&𝑖& + 𝐿''𝑖' + 𝐿&.𝑖.          (5.1)
𝜆' = 𝐿'%𝑖% + 𝐿'&𝑖& + 𝐿''𝑖' + 𝐿'.𝑖. 

as follows: 

  
𝜆%
𝜆&
𝜆'

=
𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

𝑖%
𝑖&
𝑖'

+
𝐿%.
𝐿&.
𝐿'.

𝑖.          (5.1b)

Now substitute for the a-b-c flux linkages and currents from Eqs. (5.3) to 
obtain 

  𝐏D𝟏
𝜆"
𝜆J
𝜆1

=
𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

𝐏D𝟏
𝑖"
𝑖J
𝑖1

+
𝐿%.
𝐿&.
𝐿'.

𝑖.         (5.1b)
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Eq. (5.1b) can be multiplied by 𝑷 as follow to obtain:  

            𝐏	𝐏D𝟏
𝜆"
𝜆J
𝜆1

= 𝐏
𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

𝐏D𝟏
𝑖"
𝑖J
𝑖1

+ 𝐏
𝐿%.
𝐿&.
𝐿'.

𝑖.

         
𝜆"
𝜆J
𝜆1

= 𝐏
𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

𝐏D𝟏
𝑖"
𝑖J
𝑖1

+ 𝐏
𝐿%.
𝐿&.
𝐿'.

𝑖.         (5.1b)

Now, as already explained, the inductances matrix is variable with 𝜃" in the 
following way:
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Self inductances
(𝐿$> 𝐿( > 0)

𝐿## = 𝐿$ + 𝐿( cos 2𝜃' 
𝐿%% = 𝐿$ + 𝐿( cos 2(𝜃' − 2/3𝜋) 
𝐿&& = 𝐿$ + 𝐿( cos 2(𝜃' − 4/3𝜋) 

Mutual inductances
(𝑀$> 𝐿( > 0)

𝐿#% = 𝐿%# = −𝑀$ + 𝐿( cos 2(𝜃' − 𝜋/6) 
𝐿%& = 𝐿&% = −𝑀$ + 𝐿( cos 2(𝜃' − 3𝜋/6) 
𝐿&# = 𝐿#& = −𝑀$ + 𝐿( cos 2(𝜃' − 5𝜋/6)

Armature/Field

𝐿#" = 𝐿"# = 𝑀" cos 2𝜃' 
𝐿%" = 𝐿"% = 𝑀" cos 2(𝜃' − 2/3𝜋) 
𝐿&" = 𝐿"& = 𝑀" cos 2(𝜃' − 4/3𝜋) 

Salient-pole machine
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The matrix form of:

Is the following:

𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

= 𝐿( +𝑀(

1 0 0
0 1 0
0 0 1

	− 𝑀(

1 1 1
1 1 1
1 1 1

+	

	−𝐿!

−𝑐𝑜𝑠 2𝜃" 𝑐𝑜𝑠 2(𝜃" +
M
N
) 𝑐𝑜𝑠 2(𝜃" +

OM
N
)

𝑐𝑜𝑠 2(𝜃" +
M
N
) −𝑐𝑜𝑠 2(𝜃" +

7
<M
) 𝑐𝑜𝑠 2(𝜃" +

M
7
)

𝑐𝑜𝑠 2(𝜃" +
OM
N
) 𝑐𝑜𝑠 2(𝜃" +

M
7
) 𝑐𝑜𝑠 2(𝜃" +

7
<M
)

		 						(5.10)

Self inductances
(𝐿$> 𝐿( > 0)

𝐿## = 𝐿$ + 𝐿( cos 2𝜃' 
𝐿%% = 𝐿$ + 𝐿( cos 2(𝜃' − 2/3𝜋) 
𝐿&& = 𝐿$ + 𝐿( cos 2(𝜃' − 4/3𝜋) 

Mutual inductances
(𝑀$> 𝐿( > 0)

𝐿#% = 𝐿%# = −𝑀$ + 𝐿( cos 2(𝜃' − 𝜋/6) 
𝐿%& = 𝐿&% = −𝑀$ + 𝐿( cos 2(𝜃' − 3𝜋/6) 
𝐿&# = 𝐿#& = −𝑀$ + 𝐿( cos 2(𝜃' − 5𝜋/6)

Armature/Field

𝐿#" = 𝐿"# = 𝑀" cos 2𝜃' 
𝐿%" = 𝐿"% = 𝑀" cos 2(𝜃' − 2/3𝜋) 
𝐿&" = 𝐿"& = 𝑀" cos 2(𝜃' − 4/3𝜋) 

Salient-pole machine
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Finally by introducing Eq.(5.10) and the definition of 𝑷, 𝑷𝑻 into equation 
(5.1b):

𝐿## 𝐿#% 𝐿#&
𝐿%# 𝐿%% 𝐿%&
𝐿&# 𝐿&% 𝐿&&

= 𝐿$ +𝑀$

1 0 0
0 1 0
0 0 1

	− 𝑀$

1 1 1
1 1 1
1 1 1

	− 𝐿(

−𝑐𝑜𝑠 2𝜃' 𝑐𝑜𝑠 2(𝜃' +
)
*
) 𝑐𝑜𝑠 2(𝜃' +

+)
*
)

𝑐𝑜𝑠 2(𝜃' +
)
*) −𝑐𝑜𝑠 2(𝜃' +

,
-)) 𝑐𝑜𝑠 2(𝜃' +

)
,)

𝑐𝑜𝑠 2(𝜃' +
+)
* ) 𝑐𝑜𝑠 2(𝜃' +

)
,) 𝑐𝑜𝑠 2(𝜃' +

,
-))

				(5.10)

𝑷 = !
"
	
cos 𝜃# cos 𝜃# − 120° cos 𝜃# − 240°
sin 𝜃# sin 𝜃# − 120° sin 𝜃# − 240°
1/ 2 1/ 2 1/ 2

   (5.2)    𝑷$𝟏 = !
"
	

cos 𝜃# sin 𝜃# 1/ 2
cos 𝜃# − 120° sin 𝜃# − 120° 1/ 2
cos 𝜃# − 240° sin 𝜃# − 240° 1/ 2

  (5.2b) 

   
𝜆"
𝜆J
𝜆1

= 𝐏
𝐿%% 𝐿%& 𝐿%'
𝐿&% 𝐿&& 𝐿&'
𝐿'% 𝐿'& 𝐿''

𝐏D𝟏
𝑖"
𝑖J
𝑖1

+ 𝐏
𝐿%.
𝐿&.
𝐿'.

𝑖.         (5.1b)

We obtain Eqs. (5.4)-(5.9): 

𝜆" = 𝐿"𝑖" +
<
7
𝑀.𝑖. (5.4)

𝜆J = 𝐿J𝑖J (5.5)

𝜆1 = 𝐿1𝑖1 (5.6)

𝐿" = 𝐿( +𝑀( +
<
7
𝐿! (5.7)

𝐿J = 𝐿( +𝑀( −
<
7
𝐿! (5.8)

𝐿1 = 𝐿( − 2𝑀( (5.9)



The flux linkages of the field are still given by equation obtained for the 
round-rotor machine. 𝜆. = 𝐿..𝐼. + 3/2	𝑀.𝑖"
If we report all the flux equations:

𝜆" = 𝐿"𝑖" +
<
7
𝑀.𝑖. (5.10)

𝜆J = 𝐿J𝑖J (5.11)
𝜆1 = 𝐿1𝑖1 (5.12)

𝜆. = 𝐿..𝐼. + 3/2	𝑀.𝑖" (5.13)

Where:
Ø 𝑳𝒅 is called the direct-axis inductance and defined by Eq.(5.7)
Ø 𝑳𝒒 is called the quadrature-axis inductance and defined by Eq.(5.8)
Ø 𝑳𝟎 is known as the zero-sequence inductance and defined by Eq.(5.9)
Ø 𝐿( and 𝑀( have the same meanings as before
Ø 𝐿! is a positive number

We can note that they have constant inductance coefficients, and thus are 
quite simple to use.
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Obs#1: 
𝑖" and 𝑖J are stationary with respect to 
the rotor. 
Obs#2: 
d and f can be considered to act like 
two coupled coils, stationary with 
respect to each other as they rotate 
sharing the mutual inductance 3/2𝑀.. 
Obs#3: 
d does not couple magnetically with q 
which lags the d-axis in space by 90°
Obs#4: 
The zero-sequence inductance 𝐿1 is 
associated with a stationary fictitious 
armature coil with no coupling to any 
other coils. Under balanced conditions 
this coil carries no current, and therefore 
we omit it from further discussion.
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𝑎, 𝑏, 𝑐

𝑑, 𝑞, 0



Using the voltage polarities and current 
directions of Fig.(a, b, c), let us write the 
terminal-voltage equations for the 
armature windings of the salient-pole 
machine:
𝑣% = −𝑅𝑖% −

"2"
"0

        (5.14)

𝑣& = −𝑅𝑖& −
"27
"0

        (5.15)

𝑣' = −𝑅𝑖' −
"28
"0

        (5.16)

A much simpler set of equations for the 
voltages 𝑣" , 𝑣J , 𝑣1 shown in Fig.(d, q, 0) is 
found by employing the P-transformation. 

𝑣" = −𝑅𝑖" −
"2!
"0
− 𝜔𝜆J       (5.17)

𝑣J = −𝑅𝑖J −
"29
"0
+ 𝜔𝜆"       (5.18)

𝑣1 = −𝑅𝑖1 −
"2:
"0

            (5.19)

where 𝜔 is the rotational speed 𝑑𝜃"/𝑑𝑡. 
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𝑎, 𝑏, 𝑐

𝑑, 𝑞, 0



The two axis machine model 58

𝑑, 𝑞, 0

0-axis	
𝑣1 = −𝑅𝑖1 −

"2:
"0
	 												(5.22)

Equations involving 𝑖P and 𝜆' 
are not of interest under 
balanced conditions 

Equation (2.18) for the field winding 

𝑣..# = 𝑅.𝑖. +
𝑑𝜆.
𝑑𝑡

is not subject to 𝑃-transformation, and 
so arranging the d, q, 0 flux-linkage and 
voltage equations according to their 
axes gives the following equations:

d-axis	

𝜆" = 𝐿"𝑖" + 3/2 𝑀.𝑖.	
𝜆. = 3/2	𝑀.𝑖" 	 + 𝐿.. 𝑖.	

𝑣" = −𝑅𝑖" −
"2!
"0
− 𝜔𝜆J

𝑣..# = 𝑅.𝑖. +
"2$
"0

 

(5.20)

q-axis

�
𝜆J= 𝐿J𝑖J
𝑣J= −𝑅𝑖J −

"29
"0
+ 𝜔𝜆" 

(5.21)
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Observations:

Ø The 𝒇-coil is mutually coupled to the d-coil on 
the d-axis

Ø The fictitious q-coil is not magnetically coupled 
from the other two windings since the d-axis 
and the q-axis are spatially in quadrature. 

Ø There is interaction between the two axes by 
means of the voltage sources −𝜔𝜆J 	 and 
𝜔𝜆" which are rotational emfs or speed 
voltages internal to the machine due to the 
rotation of the rotor. 

Ø The speed voltage in the d-axis depends on 𝝀𝒒 
Ø The speed voltage in the q-axis depends on 𝝀𝒅
Ø No energy conversion could occur at standstill 

(𝜔 = 0 ) since the field and the other d-axis 
circuit would then act like a stationary 
transformer and the q-axis circuit like an 
ordinary inductance coil. 

𝑎, 𝑏, 𝑐

𝑑, 𝑞, 0
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To summarize, Park's transformation replaces the physical stationary 
windings of the armature by:
Ø A direct-axis circuit which rotates with the field circuit and is mutually 

coupled to it, 
Ø A quadrature-axis circuit which is displaced 90° from the d-axis, and thus 

has no mutual inductance with the field or other d-axis circuits although 
it rotates in synchronism with them, and 

Ø A stationary stand-alone 0-coil with no coupling to any other circuit, and 
thus is not shown in Fig. 13. 

Figure 13
Equivalent circuit for the salient-pole 
synchronous generator: 
(a) with terminal voltages 𝑣& and 𝑣Q; 
(b) with armature short-circuited. 
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Ø When a fault occurs in a power network, the current flowing is 
determined by:
v The internal emfs of the machines in the network, 
v The impedances of the machines in the network
v The impedances in the network between machines and fault. 

The current flowing in a synchronous machine immediately after the 
occurrence of a fault differs from the steady-state value of the fault current.
 
Ø This is because of the effect of the fault current in the armature on the 

flux generating the voltage in the machine. 
Ø The current changes relatively slowly from its initial value to its steady-

state value owing to the changes in reactance of the synchronous 
machine.

Ø Our immediate interest is in the inductance effective in the armature of 
the synchronous machine when a three-phase short circuit suddenly 
occurs at its terminals. 
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Before the fault occurs, suppose that the armature voltages are 𝑣% , 𝑣& , 𝑣' 
and that these give rise to the voltages 𝑣" , 𝑣J , 𝑣1 (according to Park)

Ø Figure 13(a) shows the voltages 𝑣" and 𝑣J at the terminals of the d-axis 
and q-axis equivalent circuits. The short circuit of phases a, b, c imposes 
the condition: 

𝑣% = 𝑣& = 𝑣' = 0

Ø To simulate short-circuit conditions, the terminals of the d-axis and q-axis 
circuits in Fig.13(a) must also be shorted , as shown in Fig. 13(b). 
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Figure 13

Ø the switches 𝑆 should be interpreted 
in a symbolic sense:
v when the switches are both 

open, the sources −𝑣" and −𝑣J 
are in the circuit

v when the switches are closed, 
those two sources are removed 
from the circuit.



Hypothesis:
The rotor speed 𝜔 remains at its pre-fault steady-state value
Consequences:
Ø Eqs. (5.20) and (5.21) are linear and therefore the principle of 

superposition can be applied to the series-connected voltage sources. 

With both switches closed in Fig. 13(b), we have the steady-state operation 
of the machine 
Suddenly opening the switches S adds the voltage source −𝑣" in series with 
the source 𝑣" and −𝑣J in series with the source 𝑣J to produce the required 
short circuits.
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By superposition, we can calculate the fault-induced changes of all 
variables by setting the external sources 𝑣..# , 𝑣" , 𝑣J equal to zero and 
suddenly applying the voltages −𝑣" and −𝑣J to the unexcited rotating 
machine, as shown in Fig. 14. 

Ø The internal speed voltages −𝜔𝜆J and 𝜔𝜆" are initially zero because flux 
linkages with all coils are zero in Fig. 14 before applying the −𝑣" and −𝑣J 
sources. 
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Figure 14
Equivalent circuit of salient-
pole synchronous generator 
rotating at constant speed 
with field short-circuited. 
Closing switches at 𝑡 = 0 
corresponds to sudden 
application of short circuit 
to machine terminals



Ø The flux-linkage changes on the d-axis of the machine are governed by 
Eq. (5.20), described in the previous chapter: 

𝜆" = 𝐿"𝑖" + 3/2 𝑀.𝑖.	
𝜆. = 3/2	𝑀.𝑖" 	 + 𝐿.. 𝑖.	

𝑣" = −𝑅𝑖" −
"2!
"0
− 𝜔𝜆J

𝑣..# = 𝑅.𝑖. +
"2$
"0

 

(5.20)

which gives:

Δ𝜆" = 𝐿"Δ𝑖" + 3/2 𝑀.Δ𝑖. = 𝐿"Δ𝑖" + 𝑘𝑀.Δ𝑖.	 										 										(6.1)

Δ𝜆. = 𝐿..Δ𝑖. + 3/2	𝑀.Δ𝑖" = 𝐿..Δ𝑖. + 𝑘𝑀.Δ𝑖" 	 										 										(6.2)

where Δ denotes incremental changes and 𝑘 = 3/2 .
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Since the field winding is a closed physical winding, its flux linkages cannot 
change instantaneously according to the principle of constant flux 
linkages. 

Therefore, setting Δ𝜆. = 0 in Eq. (6.2) gives Δ𝑖. = −(𝑘𝑀./𝐿..)Δ𝑖"
and substituting for Δ𝑖. in the equation for Δ𝜆" yields:

Δ𝜆" = 𝐿" −
Q5$

;

R$$
Δ𝑖"           (6.3)

The flux linkage per unit current In Eq. (6.3) defines the d-axis transient 
inductance 𝑳𝒅8 , where     

𝐿"8 =
S2!
S3!

= 𝐿" −
Q5$

;

R$$
           (6.4)

Since Q5$
;

R$$
> 0 the direct-axis transient reactance 𝑋"8 = 𝜔𝐿"8  is always less 

than the direct-axis synchronous reactance 𝑋" = 𝜔𝐿" .

𝑋"8 < 𝑋"
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In defining 𝑋"8 , we assume that the field is the only physical rotor winding. 
Ø Most salient-pole machines of practical importance have damper 

windings consisting of shorted copper bars through the pole faces of the 
rotor

Ø In a round-rotor machine, under short-circuit conditions eddy currents 
are induced in the solid rotor as if in damper windings.

The effects of the eddy-current damping circuits can be represented by 
direct-axis and quadrature-axis closed coils, which are treated in very 
much the same way as the field winding except that they have no applied 
voltage

𝒅-𝒂𝒙𝒊𝒔

𝒒-𝒂𝒙𝒊𝒔
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Ø Steady state condition:
v The flux linkages are constant 

between all circuits on the 
same rotor axis. 

v D- and Q-circuits are then 
passive and do not enter into 
steady-state analysis. 

Ø Short-circuit conditions:
v The initial d-axis flux-linkage 

changes resulting from sudden 
shorting of the synchronous 
machine with damper-
winding effects. 

Ø Two new circuits:
v closed d-circuit, self-inductances 𝐿T 
v closed q-circuit, self-inductances 𝐿U 

Figure 15
Equivalent circuit of the salient-
pole synchronous generator 
with one field winding and two 
damper windings on the rotor. 
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The field and D-damper circuits representing closed physical windings are 
mutually coupled to each other and to the d-coil representing the armature 
along the direct axis. 
There cannot be sudden change in the flux linkages of the closed windings, 
and so we can write for the flux-linkage changes along the d-axis:

𝛥𝜆" = 𝐿"𝛥𝑖" + 𝑘𝑀.𝛥𝑖. + 𝑘𝑀T𝛥𝑖T		 	 													(6.5)

𝛥𝜆. = 𝑘𝑀.𝛥𝑖" + 𝐿..𝛥𝑖. + 𝑀V𝛥𝑖T = 0	 	 													(6.6)

𝛥𝜆T = 𝑘𝑀T𝛥𝑖" + 𝑀V𝛥𝑖. + 𝐿T𝛥𝑖T = 0	 	 													(6.7)

These equations are similar to Equations (6.1) and (6.2) but they have extra 
terms because of the additional self- and mutual inductances associated 
with the D-damper circuit. 

𝑀V relates to mutual coupling between rotor-based windings on the d-axis 
and thus has no 𝑘 = 3/2 𝑀. multiplier. 
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Solving Eqs. (6.6)and (6.7), for Δ𝑖. and Δ𝑖T in terms of Δ𝑖" yields:

Δ𝑖. = − Q5$ R<D Q5< 5=
R$$R<D5=;

Δ𝑖"           (6.8)

Δ𝑖T = − Q5< R$$D Q5$ 5=
R$$R<D5=;

Δ𝑖"           (6.9)

and substituting these results into the Δ𝜆" expression of Eq. (6.5) yields the 
direct-axis sub-transient inductance 𝐿"88 defined by:

W2!
W3!

= 𝐿"88 = 𝐿" − 𝑘7
5$
;R<X5<

;R$$D75$5<5=
R$$R<D5=;

        (6.10)

The direct-axis sub-transient reactance 𝑋"88, defined as 𝑋"88= 𝜔𝐿"88, is 
considerably smaller than 𝑋"8 , which means that:
 

𝑋"88 < 𝑋"8 < 𝑋"

Similar reactances can be defined for the q-axis. 
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The synchronous machine has different reactances when it is subjected to 
short-circuit faults at its terminals. 

Reactance 𝑿𝒅88
Ø Immediately upon occurrence of the short circuit 
Ø Combines with an effective resistance determined by the damping 

circuits to define a direct-axis, 
Ø Short-circuit sub-transient time-constant 𝑇"88 in the range of 0.03 s. 
Ø Sub-transient period typically 3 to 4 cycles of system frequency

Reactance 𝑿𝒅8
Ø When the damper-winding currents decay to negligible levels
Ø Short-circuit transient time-constant 𝑇"8
Ø Transient period and 𝑇"8  is of the order of 1 s

Reactance 𝑿𝒅
Ø Sustained steady-state conditions 
Ø d- and q-axis reactances 𝑋" 	= 𝜔𝐿" 	and 𝑋J = 𝜔𝐿J

The various reactances supplied by the machine manufacturers are usually 
expressed in per unit based on the nameplate rating of the machine while 
time constants or given in seconds. 
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